“AD-A183 289 LOGIC CALC: A DESIGN TOOL FOR DIGITAL SYSTEMSCU> AIR 1/2
E _INST OF TECH WRIGHT-PATTERSON ARFB_OH
G D ROSENBERGER AUG 87 AFIT/CI1/NR-87-35T

UNCLASSIFIED F/G 4.

LY
~
(7]

NL

NCANACR RN RN AN
PRI AN

"8
AU

DU R TY
i‘f's"'n."u o

LW
f"t‘l’.?"

f illllk‘ :

(W %)
DAY

L)
) ‘0'

I

N

N R RGNS S D

! ~ - A\

SECURI'V CLASSIFICAYION OF THIS PAGE (When Dlln Enlercd)

REPORT DOCUMENTATION PAGE " R oM e B

BEFORE COMPLETING FORM
» - 1. REPORT NUMRAER

! 2, GOVT ACCESSION NO| 3. REClPlEN 'S C ALOG MDEN
AFIT/CL/NR 87- 55T 75: é
[

4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED

Logic Calc: A Design Tool For Digital Systems | ., .q;q imesbrmmAte

6. PERFORMING O3G. REPORY NUMBER

7. AUTHOR(s)

Glenn David Rosenberger

8. CONTRACT OR GRANT NUMBER(s)

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM FLEMENT, PROJECT, TASK

8§

g
m AFLT STUDENT AT:) AREA & WORK UNIT NUMBERS
00
N
LD
00
F
T
o
<

University of Texas

. COMTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
AFIT/NR August 1987
WPAFB Ol 45433-6583 13. NUMBER OF PAGES
131
T MONITORING AGENCY NAME & ADORESS(i{ dilferent from Controlling Office) | 1S. SECURITY CLASS. (of this report)
UNCLASSIFIED
iSa. DECL ASSIFICATION. DOWNGRADING
. SCHEDULE -
DISTRIBUTION STATEMENT (of this Report) ete v b -
A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED D I l
0CT 2 6
17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If dillerent Irom Report)
\ - e ol 1 - -l

10. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 ﬁN E. WOLAVER "‘.‘Zl)

Dean for Research an
Professional Development

AFIT/NR

19. KEY WOROS (Continue on reverse side If necessary and ldentily by block number)

/

20. ABSTRACT (Continue on reverse side If necessary and Identlly by block number)

ATTACHED

DD , 0%, 1473 £oivion oF 1 NOV 6315 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (ithen Dala Entered)

LOGIC CALC: A DESIGN TOOL FOR DIGITAL SYSTEMS

by

GLENN DAVID ROSENBERGER, BSEE

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

| Acceson for T
: NTIS CRaa v]
. BTiC TaB
Unannotinced 0
THE UNIVERSITY OF TEXAS AT AUSTIN Justification -
e o]
August 1987 By

>Ohe raatne - cre o tm e

Dist:ibutionf
——

Avanlability Codes

Avaii i!l"n-;j.or
Special

A1l |

‘:\’. (L") .'t

LOGIC CALC: A DESIGN TOOL FOR DIGITAL SYSTEMS

APPROVED:

M fo,

« A

DEDICATION

To my Lord.

ACKNOWLEDGMENTS

1 would like to express my deep appreciation for
Professor Harvey Cragon for his sincere concern in my research
efforts and for his guidance in the preparation of this thesis. I
would also like to thank Doctor Gary Cobb for reading and making
valuable, detailed suggestions to this thesis. I thank all the
teachers at the University of Texas for their efforts to broaden
my horizons. Lastly, I would like to thank my entire family for
their love and support.

July 15, 1987

iv

Saveralth e e Bt R R AR AR R S

TABLE OF CONTENTS

1. Introduction e e e e e e e e e R |
2. Data Structure« ¢ + &+ « o o o o o o o 6
2.1 Spreadsheets and Object- Oriented Programming . . 6
2.1.1 Data Encapsulation 6
2.1.2 Special Purpose Procedure Encapsulation 7
2.1.3 Implementation of an Object-Oriented
Programming Language 8
2.2 Lotus 1-2-3 Data Structure 9
2.2.1 Memory Allocation of Individual
Lotus 1-2-3 Cells . . . P L
2.2.2 External Representation of a Lotus 1-2-3 Cell . . 14
2.2.3 Internal Representation of a Lotus 1-2-3 Cell . . 14
2.2.3.1 NMull Cell i v v v o o v o o o o 0 4 16
2.2.3.2 ASCII String Cell « .+ ¢« « . 16
2.2.3.3 Fixed-Point Cell + ¢+« « . .« 19
2.2.3.4 Floating-Point Cell e e e e e e e s 19
2.2.3.5 Formula Cell oo 19
2.3 Logic Calc Data Structure 24
) 2.3.1 Logic Calc Spreadsheet Cell Description 25
‘ 2.3.2 Logic Calc Spreadsheet Column Descriptfon 29
2.4 Logic Calc Formula Cells 29
2.4.1 The "Cell” Function 30
2.4.2 Indirection Through Recursion of the
“Cell” Function 31
2.4.3 Indirection Through "Cell-Indirect™3
2.4.4 The "Cell-Offset” Function 32
2.4.5 The *"Dual-Rank-Register®" Function 33
2.4.6 Boolean Operations in Cell Formulas 33

3. logic Calc Program Development and Operation . . . 36
R 3.1 Programming Environment 36
' 3.1.1 Window Capabilities and Mouse Sensitivity 36
3.1.2 Incremental Compilation and Evaluation 38
3.1.3 Debugging Capabilities R 1
3.2 Logic Calc Operation ., 40
g 3.2.1 Logic Calc Initialization and Termination 40
‘ 3.2.2 Spreadsheet Size &0
. 3.2.3 File Operations e e e e e e e e O 'S §
o 3.2.4 Go-To Operations R ¥4
3.2.5 Manual Spreadsheet Recalculations Y ¥]
3.2.6 Spreadsheet Editing Operations X
3.2.6.1 Cell View ¢ ¢ ¢ o e v v v e o e u e s 44

v M Ay ,Ay!;o
e

OO g d #
TR N R e R O T R e e A A A A

3.2.6.2 Cell Bait e e e e .« . . &5
3.2.6.3 Cell Bit Size v i 4 e e v . . &5
3.2.6.4 Cell Output Display e e e e e e e e 45
3.2.6.5 Cell Move and Cell Copy 46
3.2.6.6 Cell Erase ¢+ ¢ v 4 s e 4w W . . . &6
3.2.6.7 Column and Row Editing e o . . &b
3.2.6.8 Column Width Settings 46
3.2.7 Automatic Simulation L. 47
3.2.7.1 The "Print-Spreadsheet” Function 48
3.2.7.2 The "Calc”" Function 49
3.2.7.3 The load-Cell Function 49
3.2.7.4 The “"Restart” Function e e e e e e 49
3.2.7.5 User-Defined Functions 50
4. Digital System Simulation with logic Calc 51
4.1 Logic Calc Simulation of Parallel Operations . . . 51
4.1.1 Solution to the Recalculation Problem 5S4
4.1.2 Implementation of the Recalculation Solutfon . . . 55
4.2 Circular References 56
4.3 Non-Converging Circuits 56
4.4 Clocking of a Digital System 61
4.5 Registers « ¢ ¢ o o v v v v v v 4 66
5. Demonstration of Logic Calc's Capabilities Y)
5.1 Design of the Microprocessor 71
5.1.1 Preliminary Steps 72
5.1.2 Construction of Individual Components 77
5.1.2.1 Example Digital Component: The Program

Counter « ¢ « « ¢ ¢ o o o s o o o & 78
$5.1.2.2 Example Digital Component: The Internal

Data Bus ¢ ¢ s 4t v v v e u 79
5.1.3 Writing Microcode 81
5.1.4 The Microcontroller 82
5.2 Final Testing of the Microprocessor 83
6. Conclusion ¢« .. e e ... 87
6.1 Summary of Results A Y
6.2 Future Research 89
Appendix 1 . . . L L L o e e e e et e e e e e e e e e 93
Appendix 2 L . L s e e e e e e e e e e e e e 124
Bibliography ¢ ¢« ¢« c 0o v e 00 e 129
VEICA . . L L L i e e e e e e e e e e e e e e e e e e e 131

INTRODUCTION

The object of this thesis is to develop a engineering-
oriented spreadsheet that 1is capable of being used as a design
tool for digital systems.

The design methodology of fully testing and validating a
digital system at each level of abstraction before passing it on
to lower levels is essential to ensure that no design flaws are
passed on to the lower levels. There are several tools available
to the designer for simulation of digital logic, but the tools to
design and simulate a digital system at the architectural level,
the highest level of design, are both limited in productivity and
not easy to use. The architectural level needs a highly prod-
uctive design tool to completely validate the architecture before
pursuing the expensive lower levels of design. If the design tool
is relatively simple to use, this validation process can be
rapidly accomplished.

At the initial stages of design of a digital system,
stages in wvhich many changes are usually made, an ideal design
tool would be interactive, fioxible, highly visible, and gelf-
documenting. Traditional design tools, such as Instruction Set
Processor (ISP) and Register Transfer Level (RTL) languages, lack

these characteristics. Spreadsheet programs, such as

e EY,

RIEEURE P MY RO i vy O O i D .\ Y -
U NS I N I J\‘y‘g}‘! l‘\|°‘t‘.‘0‘,"l“,‘.!‘,'1'4,"\',*{1‘0,.\" |A‘H"'|v."'.ﬁ..?"."‘\lq' .:.I‘.e". e‘”’“‘:“ﬂ‘n‘ .f‘ T o AN ".I A ’. \ ‘A 3‘

I

2
Lotus 1-2-3*.'have these characteristics, and have been proven to
have the capability to simulate digital systems [4, 8, 11, 13].
Each cell within a spreadsheet can simulate fundamental components
within a digital system (Figure 1). The cell's formula is used to
describe the operation of the component. The spreadsheet offers
an interactive means of editing cells through use of cursor
positioning and menu selection techniques. Text entries may be
made in other cells, aiding documentation. The cell's value,
displayed on the screen, depicts the output state of the component
in a highly visible manner. Because a spreadsheet cell can
simulate conpufer *black boxes" at various levels of abstraction,
a high degree of flexibility is offered with such a design tool.
F-Financial spreadsheets, such as Lotus 1-2-3)are videly
available, but they iﬁ;c sov;ral drawbacks when used as digital
design tools. These dravwbacks stem from the design of such
spreadsheets as financial tools rather than engineering tools.
The primary shortcomings of financial spreadsheet programs are:

1. A maximum value for fixed-point integers. Financial
spreadsheets typically do not allow fixed-point
integers to be greater than preset limits. If
integers become too laxge in & financial
spreadsheet, they are automatically converted to
floating-point numbers. In a digital systenm,
however, many components, such as microstore, hold

binary integer values ian excess of financlal
spreadsheet's maximum integer value. When wused to

* Lotus 1-2-3 is a registered trademark of the
Lotus Development Corporation

ORI A A EROLAW I N NN AR AR TN A P WM X, N T Y ., - .
N S R S S e G S O O O Y "I{'&'Aﬂhokmwk\}?&{k@ﬂwZ-}h'p:\'bbfi

A b hay

FERE IR 4 PR IS DR OOE)
L) ",‘“;’l .,:'hi‘“l‘

[y

O 00 NN U AW N

INPUT A INPUT B INPUT C
3241 5317 2168
CONTROL
1
Cell A7 Provides
Documentation
(SELECTOR)
5317 % Display Shows Output

of Simulated Component

Internal Cell Formula Describes Function
of Simulated Component:

If A5=0 Then A2
Else If A5=1 Then B2
Else If A5=2 Then C2

Figure 1. Spreadsheet Cell A8 Functioning as a Digital Selector

LN Y
O

‘:"':“q".]‘ N

R R, AT R T R e

4

simulate such digital components, floating-point
numbers are not acceptable due to a lack of
precision.

2. Fixed size integers. Digital hardware is of various
bit lengths. A flag register may consist of only a
single bit, wvhereas microstore may consist of hun-
dreds of bits. In simulation of digital systems,
financial spreadsheets digital lack an ability to
correctly specify the operations of hardware of
various sizes because all cells have the same bit
length in a financial spreadsheet.

3. Lack of Boolean operations. Boolean logic is the
heart of all digital systems. In a financial
spreadsheet, Boolean operations can only be
accomplished with complicated if-then constructs.
This method of simulating Boolean operations is
cumbersome and error-prone.

4. Lack of binary and hexidecimal display. Interpreting
decimal values in a binary system is also very
cumbersome and error-prone.

5. Inability to simulate some key digital components in
a single cell. To simulate some digital units, a
financial spreadsheet requires several cells,
cluttering the display.

6. Slow and cumbersome programmatic operation of the
spreadsheet. Lotus offers "macros" to drive a
spreadsheet, but these macros have an unusual syntax
and are therefore difficult to write. Also, they are
interpreted rather than compiled; therefore, their
execution speed is slow.

7. No modification capabilities. The uncompiled, high-
level-language source code is unavailable for most
financial spreadsheets, making it difficult to modify
the spreadsheet for specific applications.

““An engineering spreadsheet, Logic Calc was developed with

the goal to eliminate these shortcomings. A comparison of its

data structure with the Lotus 1-2-3 data structure is presented in

AU DM P TN RO KO K AR R0 A M)
Vb Al GG s h’.‘uf.‘;"'a'c‘Jl‘-'ﬂ!‘l’c‘t‘x"‘d‘ y

/~Section 2. The design and operation of this spreadsheet is

presented in Section 3. Digital system simulation with Logic Calc
is discussed in detail in Section 4. To illustrate the
capabilities of Logic Calc as a digital design tool, a simple
microprocessor was designed using it. The techniques for this
simulation are presented in Section 5. Conclusions and

suggestions for future research in this area are stated in

Section 6.

/"

2.1

a type,

used to

two-fold:

‘both a s

2.1.1

LB 8. AV, A% AV BV Al By,

DATA STRUCTURE

SPREADSHEETS AND OBJECT-ORIENTED PROGRAMMING

Basically, a spreadsheet is a two-dimensional array of a

data object called a "cell." An individual, unique cell can be
referenced through use of the array indexes, typically called

"rows" and "columns." Each cell has specific properties including

value, display characteristics, and possibly a formula

derive its value from its relationships with data and

other cells within the spreadsheet. The power in a spreadsheet is

1. It has an ability to change and recalculate the
values of every cell whenever changes are made to the
data or the cell formulas.

2. It provides an interactive enviromment for editing
data and cell formulas.

These two features allow rapid "what 1f?" analysis of a wide

variety of problems. The array format of a spreadsheet provides

tructure for numeric data for easy recalculation and a

format for displaying the data and calculations [1l1].

DATA ENCAPSULATION

These fundamental aspects of a spreadsheet blend well

with object-oriented programming. Construction of a spreadsheet

through use of an object-oriented programming language allows use

e P . % W% W T T e SN T T e e AT
A S DT AN B N A A A A AT A A

.y

N

7
of data abstraction to fully encapsulate the properties of the
spreadsheet cell [16). Data abstraction frees programmers from the
details of the representation of the cell properties by hiding the
details of lower-level data storage, modification, and retrieval
primitives. Working on this higher level is accomplished by
providing a collection of access procedures termed "data
constructors,® "data selectors,” and "data mutators." Data
constructors can be used to make a spreadsheet cell, data
selectors can get information from the cell's property list, and
mutators can change cell properties. Object-oriented programming
also allows manipulation of data objects as a whole; therefore,
spreadsheet cells can be created, moved, copied, or deleted as

whole objects [16].

2.1.2 SPECIAL PURPOSE PROCEDURE ENCAPSULATION

Object-oriented programming also offers the encapsulation
of special purpose procedures that operate on various properties
of the object to reside within the property list of that object
type [16]). This allows the programmer to use a general purpose
procedure call on a variety of different types of object - the
object itself invokes the special purpose procedure. A common
example of this aspect of object-oriented programming can be given
by defining two types of data objects: fixed-point numbers and

floating-point numbers. The general purpose procedure call might

be "Add". Since fixed-point addition differs from floating-point

addition, fixed-point data object types should have a special
purpose fixed-point addition procedure listed under the "Add"
entry of their property list while floating-point object types
should have a special purpose floating-point addition procedure
under their "Add" entry. The programmer can then invoke an "Add"
procedure on an object of either type without consideration to its
type. Similarly, a powerful spreadsheet can be developed by
providing different type of cells: empty, constant, text and
formula. Object-oriented programming allows general purpose
operations on cells within a spreadsheet to be invoked without
regard to the type of cell. The cell responds appropriately to the
general purpose operation, selecting the special purpose operation
according to its type. Thus, this aspect of an object-oriented
programming language simplifies the development of the spreadsheet
program by eliminating general purpose dispatch procedures that
must determine the type of spreadsheet cell before issuing a

special purpose procedure call [16].

2.1.3 IMPLEMENTATION OF AN OBJECT-ORIENTED PROGRAMMING LANGUAGE

The implementation. of an object-oriented program
generally involves a pointer-based access to the data structure.
Several complex operations on data objects can be reduced to
simple pointer manipulation with this type of access to the data

structure. Associated with the pointer-based implementation is a

O A A 0 0o O, QO LA IO AN N a5 0 Tl o T O Gl

R

e e o n

- >

9
garbage collector which is used to recover the fragmented memory
space that ari;es with the pointer-based access methods. Although
a pointer-based implementation may slow computations on simple
data objects, operations on complex data objects are easier to
implement and may offer a performance advantage [16]). The
pointer-based access to the data structure and the garbage
collector of the popular Lotus 1-2-3 sgpreadsheet program is

examined in the next subsection.

2.2 LOTUS 1-2-3 DATA STRUCTURE

A study of the Lotus 1-2-3 data structure was
accompligshed to reveal the operating principles and data
encapsulation of the spreadsheet cells. This study was
accomplished by temporarily exiting a Lotus session on an IBM PC
AT through use of the /System command (Version 2.0 only). The
current spreadsheet's data structure was left intact through this
method, and it was examined with use of the MS-DOS debugger. The

lessons learned from this study of Lotus 1-2-3 were used in the

development of Logic Calc. While not a pure object-oriented

program, certain aspects of the lLotus 1-2-3 data structure enable
one to view the Lotus 1-2-3 sgpreadsheet program as a primitive

form of object-oriented programming.

iy OO A Y TrlaLy A WY o gy 2, Wy & " Wy W oy g T & o W W T
".'-'e‘l'.'l..'c'.h“.‘. 5 R S .u‘ 0 WAL S AN NI A ..l‘. N

L .4 N LX) L)

10

2.2.1 MEMORY ALLOCATION OF INDIVIDUAL LOTUS 1-2-3 CELLS
Likc. most spreadsheets, the Lotus spreadsheet is
comprised of a two-dimensional array of cells. Columns of the
spreadsheset are indexed with letters and rows are indexed with
nunmbers [10]. Generally, Lotus allocates contiguous space in
memory from the first active cell (a cell which is not empty) in
each column to the last active cell in that same column. This can
best be illustrated graphically. Figure 2 shows a portion of a
Lotus 1-2-3 spreadsheet in which the active cells are marked by a
shaded box. In this example, contiguous space in memory will be
used to represent the cells outlined in Figure 3. Garbage
collection of this portion of memory 1is invoked when cells are
added or deleted in a column so as to change the row number of the
first or last active cell in that column. In the preceding
exanmple, 1if cell D5 were erased, garbage collection would be
invoked to reclaim the space allocated for cells D3, D4, and D5.
Each cell in the lLotus 1-2-3 spreadsheet may be viewed as
a data object. A cell consists of both an internal value and a
specification for displaying that value to the external world. A
cell is described by four bytes (Figure 4). The first two bytes
and the high order four bits of the fourth byte describe the
internal properties of the cell. The third byte is used both to

specify the cell's external representation and to identify the

cell's protection property (ability of the user to edit the cell).

11

10

Figure 2. Active Cells in an Example Lotus 1-2-3 Spreadsheet

TR T RV IR G VR it

D

[SARERAERRNNNEYY

®Igee Ut IROIRN DR ORRURNOPNORARRORRRAONRORRRNARORORNRON
FOaOOO R auBo et tReRtoatRoeEsNeRRtttosoRetROROIIITRORIYTYSY

llllll.!lll:

SORAN " AR RNRO0RNRRRNERORENTTNRIOUERQUPOIEISENTRIITSE

‘ll.IIOIOUIOOll.ll'"I..Illl.l‘.l"'l'll.lllll.’

SUONRB OV RGN NNREORRERRRONRIRROtRNRRRORRRIREIRRORENDNINININDINENN
VOO RO RSO RO RERNRORRROVEERNUORPENRRROOOORERNRRARBRIRORRIRIRRORIOSNTIYVS

Figure 3.

Cells from Figure 2 that are Given Space
in Memory by Lotus 1-2-3

VRO RICRRNR RN IR RO RN RRNRRIRRINROOROOOROIORTIRYY

A Lotus Cell Consists of Four Bytes

External Representation
(Format Byte)

it
I
\

Internal Properties

Figure 4. Lotus 1-2-3 Spreadsheet Cell

T A N T TN D e o o

14

The low order four bits of the last byte identify the type of cell
of which there are five possibilities: empty cell, ASCII string

cell, fixed-point cell, floating-point cell, and formula ceili.

2.2.2 EXTERNAL REPRESENTATION OF A LOTUS 1-2-3 CELL

The external representation and protection byte for each
cell specifies how the internal value of the cell is displayed to
the user. Seven bits are used to describe this external
representation. An eighth bit is used as a cell protection flag.
If both a separate global protection flag and this cell protection
flag are set, editing operations on this cell are disallowed.
With bit 7 as the high bit, Table 1 lists the possible values of
the external representation and protection byte [15]. From this
table, an example hex value of "93" would identify the cell's
protection flag to be set and that its internal value is to be
displayed in scientific notation format with three decimal places

displayed.

2.2.3 INTERNAL REPRESENTATION OF A LOTUS 1-2-3 CELL

Lotus stores the internal value of a cell in various
ways, depending on the type of cell. Null and fixed-point cells
contain immediate, fixed-point internal values. Floating-point
cells and formula cells utilize a pointer to obtain an IEEE

standard floating-point value. String cells utilize a pointer to

ROy NN i S IR I I N s s I Tt

T T I VN T B N W T W DI NS S IOk S s

15
Bit Description - Binary Value Description
7 Cell Protection 0 Unprotected
1 Protected
6,5,4 Format type 000 Fixed Point
001 Scientific Notation
010 Currency
011 Percent
100 Comma
111 Special

3,2,1,0 1If the format type is 0000 to
000 - 100, these bits 1111
are the number of dec-
imal places displayed.

If the format type is 0000 +/-

111 0001 General format
0010 Day-Month-Year
0011 Day-Month
0100 Month-Year
0101 Text
1111 Default

Table 1. Cell Format Byte

RACAGANACNGANE 0A0AC " 2\ X Sy s e g S S ¥ Y A I A N A L
LR LR ’.n*nL.'t,.“.\".-“‘.,i'l'}"fc‘l?»'lfc.i.\ AW AR A !‘.'l':’t " YA v 0100 o P P T P U v.o o, x 2" WYY

16
obtain an ASCII string. Each of these cells is described

separately in the following subsgections..

2.2.3.1 NULL CELL

The first type of cell to be described is the null cell.
Although the user has made no entry for this cell, it exists
because of the memory allocation rule discussed in Section 2.2.1.
It has a value of zero, but its value is not displayed. Rather,
blanks are displayed at its location. Figure 5 shows the

specification of the four bytes that describe a null cell,

2.2.3.2 ASCII STRING CELL
Figure 6 depicts the ASCII string cell, which
corresponds to the cells identified as "labels" by Lotus [10]).
The internal value of this type of cell for computational purposes
is zero, but for string operations, it can be found by the use of
a pointer to a buffer of ASCII strings for all string cells within
the spreadsheet. This ASCII string has a length variable from 1
~-to 240 bytes and is terminated with a byte of zero [15]. Garbage
collection tags are used to recover space created by editing
existing string cells. This garbage collector simply allows space
to be reused if possible, but does not compact the buffer.
Internal fragmentation of this buffer may therefore occur, but

fragmented space can be recovered by writing the spreadsheet to

disk and reading it back into memory.

AV N
o . o !

\-1

LA
oty A

o A-l".m'.\.-' \F-‘_‘.-_‘
Xal

¥
’Q.&';

Tt @
b e,

|.g

i
AT Y

X X

XX

XX

X0

Figure 5. Lotus Null Cell

. s
I

[I YR
QRSN

17

P A TS RSN
A N, ¢ N

Le NS

SV SNV |

X X X1

XX XX g
£ l ‘ ; %
o,
4t

20 BIT POINTER iy

[G. C. TAGS XX | xx N
r"!

XX | XX | XX | xX

Located in < XX X X XX XX s
Label Segment X
of Memory By

X X 00 o

RY
b .
3
?‘v

Figure 6. Lotus Label Cell ')

n\\.

?o'h’!‘l.o'l!c‘t’.‘lu"'n'i‘.v' 2 X} X

Ty

B

O VAN N N 5
N R NI AN M TN VRN 'l'b“‘h.‘ n’l’q’ln‘l ".‘l..‘l.l\

* i) 3 !"1'3.' o e)

W N A TR O\ S SRR
g Ca Y ¢ oY <.

2.2.3.3 FIXED-POINT CELL

A nuch simpler cell is the fixed-point cell depicted in
Figure 7. The internal value of a fixed-point cell is expressed
as a constant two's complement integer. With 16 bits, constant
decimal integer values from -32768 to 32767 can be represented by

a fixed-point cell.

2.2.3.4 FLOATING-POINT CELL

If an internal value cannot be represented by a fixed-
point cell, a floating-point cell, as shown by Figure 8, is
automatically created. The internal representation bits form a
pointer to a table of 64-bit IEEE standard floating-point numbers
{1). IEEE floating-point not-a-numbers are used to give the value
"Error” or "NA" to a cell [1, 10). Should a floating-point cell
be edited so that its type is no longer a floating-point cell, a
vacancy in the table will exist. This vacancy is marked with yet
another IEEE floating-point not-a-number. This vacancy can be
detected when creating a new floating-point cell, and the memory

space reclaimed.

2.2.3.5 FORMULA CELL
The most interesting type of cell is the formula cell
depicted by Figure 9. A formula cell is a type of cell that

contains an internal value that is the result of the computation

of its internally stored formula. This computation may have other

20

X X X X X X X2

\f/

2 BYTE INTEGER
(IMMEDIATE OPERAND)

Figure 7. Lotus Fixed Point Cell

A MY o ¥ g e W DA A U W SRR A "o o S

- e

P X

- -

21

X X X X X X X3
20 BIT POINTER
f 8 BYTE IEEE STANDARD FLT. PT.
Located in
Floating Point
Segment of
Memory

-

Figure 8. Lotus Floating Point Cell

"
B R T N R e T N o N e DA AT S AN e]

22

X X X X X X X 4
20 BIT POINTER
G.C. TAGS VALUE
(2BYTES) | (8 BYTE IEEE STANDARD FLT. PT.)
LENGTH |FORWARD LINK | BACKWARD LINK
(2BYTES) (3BYTES) (G BYTES)
Located in RECALC | X LOCATION Y LOCATION
Formula BYTE (1 BYTE) (2 BYTES)
Segment of
M
cmory CELL FORMULA - REVERSE POLISH STRING
(VARIABLE LENGTH)
\ 03

Figure 9. Lotus Formula Cell

r
UG Y RN PO) MO A A T T W Y PR T W RN N NN LN AT A
‘."'u"l"w .n.“u"‘:'\'t..l.! ‘I'l’l h‘s .'I l.i .:'."0 ‘.‘I‘O l.l., ' “b. >, ‘0 () .. J'O. 'p .! A% 0% AY,T .Q 1) .’ W ‘u '(‘V A ‘l‘ '\ i NM};&

M}

23
cell values as its parameters. Here, the internal representation
bits form a pbinter to a buffer of various length entries that

, represent each formula cell. There are several items encapsulated
in each entry of the formula buffer:

1. Garbage collection tags. Garbage collection is
accomplished by reusing space in the same manner as
. for label cells.

2. Value. The same IEEE floating-point format of
; floating-point cells is used to represent the
computed internal value of a formula cell.

3. Length of entry. These two bytes specify how many
Yy bytes are used to represent the formula. This value

is useful when copying the cell to another location
Y by specifying the number of bytes to be copied to
\ another buffer entry.

R 4., Links. Two three-byte pointers link all formula
cells together in a bidirectional manner. The
formula cells are linked in the chronological order
in vhich they were entered into the spreadineet. The
links facilitate spreadsheet recalculation. Lotus
does not have to examine every cell to determine
vhether it is a formula cell during spreadsheet
recalculation. Rather, it can step through all
formula cells with use of this linked formula 1list.
A double link is established so as to allow the
arbitrary removal of an entry in the formula buffer.
If a formula cell is edited so that its type is no
longer a formula cell, the links of the two cells
K that point to it must be updated. A formula cell

knows which cells are pointing to itself by
V examination of its own links.

g - s
e e s

-

5. Recalculation flag. A single byte is used as a flag

during spreadsheet recalculation. During spreadsheet
) recalculation, this flag is initially cleared for all
cells. Because formula cells may be evaluated out of
sequence due to references of other cells, this flag

4 is set to mark those cells that have been evaluated
! during the spreadsheet recalculation. Subsequent
y references to a marked formula cell during a

) spreadsheet recalculation need not evaluate its

- e e

l
l
l
*f (%Y l‘n'l.o ‘.a‘l‘g.l. .i‘ .“l ’l"' '.l ‘.'.. o % Mo A -'l g ' g ."! .‘..'U Ah‘.~ -.I '

"

N"' <, (f‘-’ CAA D T A '\-.ﬁ- e \ . _‘ _..-,'.o_‘.-,_.-A..-,..f:_‘.-,'.
s Lok s <

24

formula. The net result is that each formula cell is
evaluated only once during spreadsheet recalculation.
The recalculation flag is also used to detect and
correctly evaluate circular references during
spreadsheet recalculation. Spreadsheet recalculation
and circular references are discussed further in
Section 4.

6. Location. The following three bytes identify the
cell's location, one for the column, and two bytes
for the row. A cell needs to know its location in
the spreadsheet to enable it to utilize the relative
cell addressing offered by Lotus [10].

7. Formula. The internal specification of the formula
follows. This entry has a length variable from 2 to
2064 bytes [15). In lotus 1-2-3, a cell formula is
both written by the user and displayed to the user in
a infix notation with syntax and semantics unique to
Lotus 1-2-3. When storing the formula, however, the
Lotus 1-2-3 program converts the formula into a more
compact representation using a reverse-Polish
(postfix) notation that is terminated with a formula
opcode of "03". A lengthy list of operations exist,
giving Lotus the ability to compute scientific,
financial, and database statistical functions. A
cell may be a parameter in a cell formula and it may
be specified either absolutely or relatively. Each
time a formula cell is highlighted by the user for
viewing, the Lotus 1-2-3 program reconstructs and
displays the infix version of the formula. The
internal representation of formula opcodes in memory
is somevhat different than ths representation when
the spreadsheet is stored on disk, but publishings of
disk formats can be used to unassemble cell formulas
[15].

2.3 LOGIC CALC DATA STRUCTURE
The data structure of Logic Calc was patterned after that
of Lotus 1-2-3. The differences center around the fact that Logic

Calc is designed to be used as a digital design tool rather than a

financial spreadsheet. Logic Calc was written in Common Lisp, a

.....

|
o N N L s D L S ey

. 25
popular object-oriented programming language used in artificial
intelligence applications (5, 12, 16].

The spreadshest indexes of the two spreadsheets are
identical: columns are referenced by letters and rows are
referenced by numbers. Logic Calc goes a step further, however,
by offering a variable size spreadsheet array. This gives the
design engineer the opportunity to tailor the size of the
spreadsheet to a specific problem. A smaller spreadsheet will use
less space in memory. This means that garbage collection will
occur less frequently resulting in faster simulations. A large
spreadsheet, however, may be necessary to simulate digital systeas

with many components.

2.3.1 LOGIC CALC SPREADSHEET CELL DESCRIPTION

The spreadsheet cells of Logic Calc are data objects
defined by the use of Common Lisp flavors [5, 16]. While Lotus 1-
2-3 has several types of data objects with different property
lists, each cell within the Logic Calc spreadsheet is of the same
type (identical property lists), but a value of an item of the
cell's property list distinguishes the type of cell. (Figure 10)
The single type of Logic Calc spreadsheet cell is patterned after

the formula cell of Lotus 1-2-3: {t has an internal

representation in the form of a formula and a value, it has an
external representation showing the output state of the cell, and

it contains a recalculation flag to permit proper spreadsheet

N A S R S L AR L A T 1

26

XX | XX

® Value
—& Formula

¥ Recalc Flag
—& Bits

Output
Display
Changed
Value Flag

Figure 10. Logic Calc Cell

o PEGEHATAG A LEY, 08, (L0t T LG 0 kN Y |

27
recalculation. Unlike lotus 1-2-3, the Logic Calc cells are not
linked together. Rather, a list of formula cells is maintained as
s global list. Also, Logic Calc has two properties not found in a
Lotus 1-2-3 cell: a bits property that allows the spreadsheet to
more closely represent digital components of various lengths and a
changed-value property that speeds up redisplay of a spreadsheet
following a recalculation. The following is a list of the Logic

Calc cell properties:

1. Type. The four types of cell objects are a null
cell, which has a zero value but is displayed as
blank characters; a constant cell, which has a
constant integer value; a string cell, which has a
constant ASCII string value; and a formula cell,
which has either an ASCII string value, a constant
value, a T (true) value, or a nil value (as defined
by Lisp). The formula cell also contains a Lisp
expression used to calculate the value. All cells
are initially null cells, but change as the user
edits the sprea“sheet.

2. Value. As mentioned above, this property of the
spreadsheet can be either an integer, an ASCII
string, T, or nil, depending upon the type of cell.
This value is displayed on the spreadsheet window in
a format specified by the output-display property.
If the cell is not a formula type, this value is
constant. If the cell is a formula, this value is
the result of the spreadsheet recalculation method
described 1in Section 4.

3. Formula. Although all cells contain this property,
only formula cells make use of it. This property is
a Lisp form that is evaluated upon each spreadsheet
recalculation to dstermine the cell's value. Unlike
Lotus 1-2-3, formulas in Logic Calc are stored
exactly how they are written and displayed: as a Lisp
fornm. This Lisp form utilizes a prefix notation
vwhich is easy to read and evaluate. For example, the
infix formula of "(3+5)/2" would be written in prefix

o N . - P A A A A A A R A x & w- .
v.‘:e"f'.‘.‘l':"':‘.'.t'f'v":'..':'.‘:0!':'.‘:|":‘~n|’a"x'l\.h ASCAL o'."c" -'»"a 98,900,010 d.':”"h".‘. n'o’. o8, %08, o8, 0‘ \ ’?"" o ' L,

P
P W d

0
+

D) -
Mxa Aan *
N O e S O A MU D)

]
$.

28

form as "(/ (+ 3 5) 2)." This property is discussed
further in the Section 2.4.

Recalculation flag. Again, only formula cells make
use of this property. This flag is used to ensure
that each cell is evaluated only once during
spreadsheet recalculation in a manner similar to that
employed in Lotus 1-2-3. Logic Calc recalculation
methods and circular reference capabilities are
described in Section 4.

Bits. This is a property that is unique to the Logic
Calc spreadsheet when compared to other spreadsheets,
and it stems from the design goal of making logic
Calc a design tool for digital systems. The bits
property, set by the user or defaulted to 32, allows
a cell to closely simulate a digital component by
providing a specification for the number of bits of
the component. Cells which have integer values are
restricted to a value that can be specified with the
prescribed number of bits given by the cell's bit
property. Because internal values are adjusted by
this property, negative values show a true two's
complement form of leading 1l's in the left-most bit
positions and are displayed without a minus sign.
For example a 32-bit cell subtracting four from three
with a formula of (- 3 4) will yield a value of
FFFFFFFF hexidecimal. Overflow of a cell is also
possible due to this property. For example, a three-
bit cell adding two and seven with a formula of
(+ 2 7) will yield a result of 1. This property has
no effect on the cells with ASCI1 string, true, or
nil values.

Output display. This property, set by the user
during spreadsheet editing, determines whether the
value of the cell 1is displayed in binary or
hexidecimal. This property has no effect on ASCII
string, true, or nil values.

Changed value flag. During editing or spreadsheet
recalculation, this flag 1is set whenever a cell
changes its value. The function "Print-Spreadsheet-
Changed-Items” rapidly wupdates the display by
redisplaying only those cells whose value has changed
since the last display update. The redisplay time
can be significantly reduced by this function,
allowing a faster program operation during all facets

: . - P O] LIPS P S P
LA s NN L I IO T e sl v eI N AT N T

-

HOLALCLCG TR, C6

29

of spreadsheet programming for digital design
simulation. VWhen the user wishes to view a different
region of the spreadsheet, all values of the
spreadsheet need to be redisplayed. 1In this case,
Logic Calc uses the function "Print-Spreadsheet”
which {8 significantly slower than "Print-
Spreadsheet-Changed-Items." Fortunately, this total
redisplay is usually required only during spreadsheet
editing operations where speed is not critical.

2.3.2 LOGIC CALC SPREADSHEET COLUMN DESCRIPTION

Besides the cell, the other significant data object in

the Logic Calc spreadsheet is the column. This object has three

device.

1.

properties, all of which are used to generate the display:

Letter. This property is equal to the one or two
uppercase letters that identify the column index.
This ASCII string 1is printed as a mouse-sensitive
iten vhensver the entire spreadsheet is redisplayed.
The user can highlight each column index with the
mouse and select from a menu various column editing
operations.

Width. This value, set by the user or defaulted to
20, is the amount of horizontal space on the screen
that the column occupies. This value is measured in
number of characters of the fixed-width font that is
used in the spreadsheet window.

Position. This value is used to remember the left
edge of each coluan. This information must be
maintained in order to rapidly update the display
after editing or recalculated.

2.4 LOGIC CALC FORMULA CELLS
Formula cells form the heart of the spreadsheet - without
them, a spreadsheet would be merely a data storage and display

Because logic Calc cell formulas are both written and

stored as a Lisp form, a user needs to learn only one syntax to

30

utilize Logic Calc directly or to interface to Logic Calc from
other programs. When ﬁsed to design digital systems, the Lisp
syntax and semantics prove far more powerful than that used by
Lotus 1-2-3 due to Lisp's straight-forward, unambiguous syntax,
its ease of editing, and 1its ability to perform operations not
offered by Lotus - specifically, Boolean cperations. Also,
because Logic Calc cell formulas are written in the same language
that Logic Calc is written in, the user will find it easy to make
modifications to the Logic Calc source code once he learns how to
write simple cell formulas. Thus, he can easily tailor Logic Calc

to his own needs.

2.4.1 THE "CELL" FUNCTION

A few functions have been provided to reference the
values of other cells within the spreadsheet. These functions
provide the necessary relationships between spreadsheet cells for
the cells to simulate discrete digital components. The most
common is the "Cell" function. Because this is the basic building
block for cell references within the spreadsheet, particular
attention was given to the operating speed of this function when
the source code was developed. There can be only a single
parameter to the cell function - the cell location. An example

best illustrates the use of the cell function. The formula entry

(+ (Cell A2) (Cell A3)) will return a value equal to the sum of

31

the values in cells A2 and A3. The cell function will accept
either upper ;r lower case column indexes. If the cell location
does not exist or typographic errors exist in the parameters, this
function returns nil. This type of error will generally cause the
Explorer debugger to be entered because the value nil cannot be
used with integer or string operations. The Explorer debugger
prints out highly informative error messages that will aid the

user in detecting the source of his error.

2.4.2 INDIRECTION THROUGH RECURSION OF THE "CELL" FUNCTION

To simulate digital systems, it was deemed that
indirection would be useful. Any level of indirection is
available through recursion of the cell function. For example, if
the value of cell A6 is the ASCII string "B52", an entry of (Cell

(Cell A6)) would return the value of cell B52.

2.4.3 INDIRECTION THROUGH "CELL-INDIRECT"

An alternate means to obtain a single level of
-indirection is provided through the “"Cell-Indirect" function. For
example, if the value of cell F16 is the ASCII string "RF4", then
the formula entry (Cell-Indirect F16) would return the value of
cell RF4., As a final example of indirection consider the values
of the following cells:

A4: "B17"

Al0: "B29"

Cd -'-‘\-“\ Cd

. NN,
NN ORI A PSR A |

32
B17: 34 (Decimal)
329:.12 (Decimal)
A formula entry of (+ (Cell (Cell A4)) (Cell-Indirect AlO0)) would

return a decimal value of 46.

2.4.4 THE "CELL-OFFSET" FUNCTION

A lookup function was also deemed useful in order to
simulate digital systems. This function is most useful when
simulating a component that needs the capability to index into a
block of data such as a memory system. The function that provides
this is "Cell-Offset.”™ This function takes three parameters: the
anchor cell location, an x-offset from the anchor location, and a
y-offset from the anchor location. An example best describes its
function: (Cell-Offset C5 3 10) returns a value equal to the
value of cell F15. The offset values may be any integer or a Lisp
expression which returns an integer. If a parameter for an offset
does not evaluate to an integer, or the offset cell does not
exist, this function returns nil. For another example, consider
the following cell values and formulas:

F4: -6

F5: (Cell F4)

F18: 3

F20: 5

The formula (cell-offset L23 (cell F5) (cell F18)) will return a

decimal value of 5.

D)
¢ ‘0‘-331‘4.....0‘

33

2.4.5 THE "DUAL-RANK-REGISTER" FUNCTION

The ;bility of Logic Calc to describe digital systems is
most apparent with the use of the function "Dual-Rank-Register."
This function allows a user to describe a dual-rank register in a
single cell. A dual-rank register is an elementary digital module
used in many digital circuits [2, 3, 9]. 1ts use is described in

Section 4.4.

2.4.6 BOOLEAN OPERATIONS IN CELL FORMULAS

As a digital systems design tool, a key advantage of
Logic Calc over financial spreadsheets such as Lotus 1-2-3 is its
ability to perform Boolean operations. Logic Calc cell formulas
can utilize Lisp Boolean operators to perform logical operations
at the cell, byte, or bit levels [5, 12].

Boolean operations at the cell level are best illustrated
with the "Cell"™ function. For example, a cell formula of
(Logand (Cell Al) (Cell A2)) will return a value equal to the
bitwise logical "anding®” of cells Al and A2. The user must
consider the bits property of each cell when writing Boolean
operations at the cell level. When used as parameters of Boolean
operations, cells of different lengths are right-aligned with
leading zeros placed on the left for cells with lower bit values.
The final result is left-trimmed as per the formula cell's bit
property. For example, consider the following cell formulas,

values, and bit specifications:

AN e " DT T PCIR IO R o NN Y R N A R LRIy T e S
DO AT L r L n i A AR AN TA T A A o Dt O MO 0 ¢ A JO Wi N L \

1 L e

O g A RGN X
, L)

0% s PV

Cell Al: 0110101001 Binary Value (10 Bits)

Cell A2: " 01111 Binary Value (5 Bits)

Cell A3: (Logand (Cell Al) (Cell A2))

If cell A3 has a bit property of 10, its formula will yield a
binary value of 0000001001. 1If cell A3 has a bit property of 5,
its formula will yield a binary value of 01001.

As a contrasting example, consider a change to the cell
formula for cell A3 to specify a logical inclusive-or:

Cell Al: 0110101001 Binary Value (10 Bits)

Cell A2: 01111 Binary Value (5 Bits)

Cell A3: (Logior (Cell Al) (Cell A2))

Now, if cell A3 has a bit property of 10, its formula will yield
a binary value of 0110101111. If cell A3 has a bit property of 5,
its formula will yield a binary value of 0l11l1l.

For byte operations, Lisp provides several functions for
dealing with an arbitrary-width field of contiguous bits appearing
anywhere in a cell [12]. 1In the following example, cell B2 uses
vthe Lisp functions "Ldb" and "Byte" to extract a 4-bit byte from
cell Bl starting at bit #2:

Cell Bl: 1111010110 Binary (10 Bits)

Cell B2: (Ldb (Byte 2 4) (Cell Al))

With a value of 10 for its bit specification, the resulting value

of cell B2 is 0000000101 Binary.

A T)

ANy

b

e o™ AL T .
» .. -I .' r. . ‘l f
PR O, VAT, SOt (N

l..-*"v

<o

35

To perform operations at the bit level, Lisp provides the
capabilities fé test any bit of any cell [5, 12]. For example,
the cell formula (Logbitp 3 (Cell F16)) returns a value of true if
bit 3 of cell F16 is 1. Other bit operations can be performed by

extracting a 1-bit byte from a cell as described above.

T e -

i

[

LOGIC CALC DEVELOPMENT AND OPERATION

3.1 PROGRAMMING ENVIRONMENT

The programming environment used for the development of
Logic Calc was the Texas Instruments Explorer workstation. This
proved to be an ideal tool for the development and implementation
of the spreadsheet. A combination of extensive window
capabilities, mouse sensitivity, incremental compilation and
evaluation capabilities, and extensive debugging capabilities
allowed rapid development of a user-friendly, highly interactive

spreadsheet.

3.1.1 WINDOW CAPABILITIES AND MOUSE SENSITIVITY

One key feature of the Explorer that aided this research
was a sophisticated window capability which resulted in a easy-to-
develop user interface for the spreadsheet [6]. The user
interface of Logic Calc consists of a team of three windows that
share a common input burffer. An Explorer constraint frame
determines the sizes and positions of the three windows. Figure
11 depicts the team of three windows.

The largest window, the spreadsheet window, depicts the
row and column indexes and the values of the cells that can fit
within the window. This window is simply an Explorer truncating

window mixed with a mouse-sensitive typeout window [6]. This type

36

A DG ; (™ a” .-a".- "vl‘?"-f'"fv'l‘ Ca?n Co f ST A LR ORI LSO
R e R Ve A P A AP gty Y A A DA A

37

O 00O\ A W~

Interaction Window

Main Menu
File Size GoTo Calc Exit

Figure 11. Logic Calc User Interface

T L AN n e

n - AT e e T e T A A T A A T T T T AN P A e
N N PP RS A N s A v, R0 A G|

R AT

38

of window allows certain items to be output so that they are
highlighted when the mouse cursor is positioned over them. The
spreadsheet program was designed to respond to menu choices when
the user clicks the mouse upon the highlighted mouse-sensitive
item. This gives the user the capability of using the mouse to
select spreadsheet cells, columns or rows for viewing, editing,
copying, moving, inserting or deleting.

The second window of the constraint frame is the
Interaction Window. This typeout window [6] is used to output
information requested by the user, to display certain messages,
and to input user responses to various program prompts.
Essentially, anything that must be typed by the user to edit the
spreadsheet is generally input through this window.

The third window of the constraint frame is the Logic
Calc Main Menu. This is an Explorer command-menu window which
allows the spreadsheet programmer use of the mouse to select items
of the Main Menu [6]. The Main Menu consists cf choices that can
initiate file operations, change the size of the spreadsheet,
select the region of the spreadsheet to be viewed, recalculate the
spreadsheet, or exit the spreadsheet to terminate editing

operations.

3.1.2 INCREMENTAL COMPILATION AND INTERPRETATION
Another feature that allowed rapid program development

was the flexibility of the Explorer environment to accommodate

O r s S AGEERTE R B R R _ e A A A A A N Sl e el A st

bt
Lyt

»
[} [N)
WG WY

L)
4

39

various degrees of compilation and interpretation (7). During
development of Logic Calc, it was possible to select between a
recompilation of the entire lLogic Calc program, the changed
sections of that Logic Calc program, or just a specified region of
the Logic Calc program. This allowed an incremental compilation
ability which aided in the incremental, design and test, bottom-up
software development methodology that was used. The Explorer
environment also supported an interpretive mode with similar
degrees of freedom as to the amount of code to be evaluated. This
allows testing of various segments of code without recompiling,

thereby speeding up testing of the Logic Calc program.

3.1.3 DEBUGGING CAPABILITIES

The final element of the Explorer environment that stood
out as an aid during Logic Calc program development was an
extensive interactive, on-line debugger. When program errors
arose during testing of Logic Calc, the debugger printed out
highly informative error messages and offered the ability to
examine program variables at the time of the error. Depending on
the type of error, the debugger often offered the capability to
proceed from the error, reading a replacement value for the one in
question. With this extensive debugging capability, it was easy
to locate the source of errors, and sometimes corrections could be

made and the test continued from the point of the error, without

R 20 L IR VLN R P MU N W I T S TR S »
'tl\"‘.C‘ ,‘,l“. ¥ \l’ "’ Se e e "‘f" (fu' Yy "' - .r\(_‘_}' WA R

AR Ty

AR

s,

"‘ »

e

40
exiting the test. Coupled with the capability to accomplish
incrementel cénpilation, the debugger was the primary reason for

} the ability to rapidly develop a sophisticated user interface to

Logic Calc.

X 3.2 LOGIC CALC OPERATION

b The user interface to Logic Calc was designed to utilize
§ menus and mouse selection whenever possible. Appendix A is the
source code for lLogic Calc. The rest of this section serves as a

‘ users manual for Logic Calc operations.

3.2.1 LOGIC CALC INITIALIZATION AND TERMINATION

Logic Calc is stored in SEL-5 and SEL-6 Explorer
workstations of the University of Texas Symbolic Engineering
Laboratory in the local Logic-Calc directory under the filename

"Logic-Calc.Xfasl." The easiest way to start the program is to

enter the ZMACS editor and select "Load File" from the Explorer

-

-
-

Suggestions Menu. Then simply respond to the prompt with "Logic-

- -

Ca'lc;Logic-Calc". Logic Calc will automatically be loaded and

- -

initialized. At this point, the program is an edit mode.

CX]

Selection of items from the Logic Calc Main Menu and editing of
columns, rows and cells are possible. The program is simply

looping, waiting for a command from the user.

-

To terminate a Logic Calc session, simply click on the

"Exit" option from the Logic Calc Main Menu.

S

il
i

§,
)

)
.

0
N
s
i

. B \ - . T U L N LA] > P I N,) b Y S)
R A e A e et A e RPN RN 20, U AN N AT N A A O PO N AN

41
Subsequent reentries into Logic Calc after the initial
load can be accomplished by evaluating "(Restart)" from a Lisp

Listener or ZMACS buffer.

3.2.2 SPREADSHEET SIZE

The spreadsheet size is adjustable, limited primarily by
the amount of virtual memory, the length of strings contained in
string cells, the bit size of constant and formula cells, and the
complexity of formula cells. With 115 Megabytes of virtual memory
available, it was possible to create a spreadsheet of 50,000 null
cells; 50,000 constant cells of 32 bits; 50,000 string cells, each
containing a ten character ASCII string; and 50,000 32-bit formula
cells, each containing a simple cell formula.

The user can change the size of the spreadsheet by
selecting the "Size" item from the Logic Calc Main Menu. He will
then be prompted for the number of rows and columns in the spread-
sheet. The program currently limits the user to a spreadsheet of
400 rows by 300 columns, but this could easily be changed by
adjusting the program constants “"Max-Number-of-Rows” and "Max-
Number-of-Columns® at the beginning of the source program. If
more than 702 columns are specified for Max-Number-of-Columns,
changes will have to be made to accommodate a three-letter column

indexes in the "Row&Col" function and the "Column-String"

function.

W e, W F A AN ") K
y) 'A‘J“.A\-J\:\:\J _A\i\, »

. . - ay i 5 T T N A T LI T e N . ~
"3'!".‘\"‘6'55‘5\'{‘«|2.|‘, gl"ﬂ".\.'.!‘d ‘Q',‘y.. AN 3, .' Nf l. (R N, ‘. \i‘ ~ \ “‘ Nt vy W /. ‘

42

3.2.3 FILE OPERATIONS
Bocnﬁso it 1{s necessary to save spreadsheets for later
work, file operations were deemed necessary for Logic Calc.
Although these file operations were kept at a minimum, they are
sufficient for proper operation of the spreadsheet. Basically, a
spreadsheet can be written to, or retrieved from, the Logic Calc
directory of the local machine. To accomplish other file
operations, such as deleting, renaming or copying spreadsheets, it
is necessary for the user to exit Logic Calc and use the tools
provided by the Explorer workstation. To initiate a file write,
the user should click upon the "File® menu item on the Logic Calc
Main Menu. He should then select "Save" from the next menu. The
user will be prompted for the file name through the Interaction
Window. 1If the name given already exists as a saved file, a new
copy is saved, with a higher version number. Read operations are
accomplished in a similar manner. If more than one copy of the
specified file exists during read operations, the file with the
highest version number is selected. If the specified file does
not exist, the user is informed with an error message through the

Interaction Window.

3.2.4 GO-TO OPERATIONS
Depending on the selected widths of columns, Logic Calc
automatically selects the number of columns displayed. The number

of rows that are displayed is 36. Because scrolling operations do

4. -

Y,

LR KL,

Py v v vy

r,LSL

,

"I
s
FATAC AN NEAE A

WY Y YV S R e . S VY Y X W S

T

43

not exist in logic Calc, the ugser must select the "Go To" option
from the Logic Calc ﬁain Menu to view various regions of the
spreadsheet. After selecting this option, the user must respond
to the prompt with the cell location that he wishes to be placed
in the upper left cormer of the screen. Logic Calc will then
change the display as specified. If the specified cell does not
exist, Logic Calc will issue a beep. The "Go To" item from the
Logic Calc Main Menu may also be used during Move and Copy
operations on rows, columns and cells as discussed in Section

3.2.6.

3.2.5 MANUAL SPREADSHEET RECALCULATION

To accomplish incremental design and testing of a digital
system on Logic Calc, it is often desired to recalculate the
spreadsheet during editing operations. This can be accomplished
by selecting "Calc" from the Logic Calc Main Menu. The
spreadsheet will then be recalculated, and the screen will be
altered to display then updated results. This action 1is very
similar to pressing the "Calc” function key when using Lotus 1-2-3
[{10]. 1I1f there are numerous formulas within the spreadsheet, this

recalculation process may take a few seconds.

3.2.6 SPREADSHEET EDITING OPERATIONS

WVhen first activated, the spreadsheet is in an edit mode.
Cells, rows or columns may be edited. In this edit mode, the
spreadsheet program simply loops continuously, awaiting mouse
clicks from the user. Upon detection of a mouse click, the main
program loop calls the appropriate function to accomplish the
requested operation.

Editing operations on cells are initiated by the use of
mouse. The user locates the cell with the mouse cursor. The cell
selected by the mouse is highlighted with a box-like cursor. To
simply view the highlighted cell's contents, the user should click
left on the mouse. If the user click's right, he is presented
with a menu to view the cell, edit (rewrite) the cell, change the
cell's bit specification, set the cell's output display to binary
or hexidecimal, copy the cell to another location, move the cell
to a new location, or erase the cell. When the user selects an
item from this menu, Logic Calc will then prompt the user for the
necessary information to accomplish the editing operation that he

selected.

3.2.6.1 CELL VIEW
If the user selects to view a cell, the following
information is displayed in the Interaction Window: cell

location, cell type, cell value (both decimal and hexidecimal for

: g -
TR i e,

v

o, o
- -

LA X S 3

3}

45

integer values), cell bit size, and cell formula (if a formula

cell).

3.2.6.2 CELL EDIT

1f the user selects to edit a cell, Logic-Calc presents
another menu to the user so that he can create a null, constant,
string, or formula cell. The cell's current contents are then
displayed, and the user is prompted through the Interaction Window
for the necessary information to complete construction of the
cell. If errors are made during cell editing operations, Logic

Calc beeps and the cell construction is aborted.

3.2.6.3 CELL BIT SIZE

If the user selects to change the bit specification of a
cell, he is prompted to enter the size in bits for the specified
cell. If the user does not respond with a positive integer less
than 127, Logic Cell simply beeps to signify an error has

occurred.

3.2.6.4 CELL OUTPUT DISPLAY

1f the user selects to change the output display of a
cell, he is presented with another menu to choose between binary
or hexidecimal with the mouse. He simply needs to click the mouse

on the desired choice of cell output display.

ot v ™ Mt N et htoa

A SR S R N S0t St T ST "l SO S S S S L A I R N R
RS AL LN N CLERAR OO ORI TR OR P N :L\‘&-{hh\}-\.s‘u:ﬁ\d

46
3.2.6.5 CELL MOVE AND CELL COPY
é 1f cﬁe user selects to move or copy a cell, Logic Calc
=f prompts the user to select a target location with the mouse.
Before selecting a target cell, the user may make use of the "Go
To" option from the Logic Calc Main Menu to display a different

M portion of the spreadsheet.

i 3.2.6.6 CELL ERASE
t If the user selects to make the selected cell empty, the

' cell is erased and the display updated appropriately.

3.2.6.7 COLUMN AND ROW EDITING

,'0
£
Q Other editing operations exist for entire rows and
i}

columns, and are accomplished in a similar manner. An entire row
[)
h) or column of null cells may be inserted. Similarly, rows and
:, columns can be moved, copied or deleted. The user simply needs to
L/
1

highlight the row or column index, click right, and choose from
{‘ the items presented. Because a large portion of the spreadsheet
Y is altered duriag this operations, they are accomplished only
j after the user confirms his intentions through a second
;‘0
b confirmation menu.
.
KX 3.2.6.8 COLUMN WIDTH SETTINGS
o The width of a column will affect the display of values
’|
N within that column. The value of each column width specifies the
’0
f maximum number of characters that may be displayed horizontally
W
l
i
ﬁ
N
N

AQF‘?} PSRRI N NN

2 - » \J - A N ' I ‘.
RN A AT N SO P O \';_4,“ TR N A N S AN N A LSOO

Vg e¥ g LN LA LA LI LN LN LA LT L LT LSS LA L W ¢ gt gt gt g% ab gt ai gt gt gt a8, gV gt i av

47

for each cell within the column. Cells with ASCII string values
will have their outpug display right-trimmed to fit within the
column width. Cells with numeric values will be displayed by a
string of asterisks if their bit size generates a display in the
current output-display format that requires more characters than
the column width.

To change a column width, the user needs to highlight the
column index with the mouse and click left. The user is then
prompted for the requested width of the column. The display will
then be updated as requested. If the user does not respond with a

positive integer, Logic Calc simply beeps to signify the error.

3.2.7 AUTOMATIC SIMULATION

In Lotus 1-2-3, a program written with Lotus macros was
executed to initiate and drive an automatic simulation of a
digital system (10, 13]. The Lotus 1-2-3 macros can be difficult
to read, write, and edit because they are stored in individual
‘spreadsheet cells and are often hidden by the contents of other
cells. Also, Lotus macros utilize awkward semantics that can be
difficult to understand.

In Logic Calec, an automatic simulation is initialized
and driven by a Logic Calc driving program. To write and execute

a Logic Calc driving program, Logic Calc should be exited

normally. The driving program can then be written and executed

SR I ST

3
)

oy Ay -ty

o

ues A X

g

IR R F P P

j

:!:'clJ",l.l. .

[RA iy

» TR
» ‘.l‘ 1'." A

48
from the ZMACS editor. ZMACS offers extensive full-screen editing
operations, file operations, and incremental compilation and
evaluation capabilities [7]. Another advantage that Logic Calc
has over Lotus is that the Logic Calc driving program is written
in Lisp, the same language used for cell formulas, the same
language used for the development of Logic Calc, and the the same
language used for the operating system of the Explorer
workstation. This greatly simplifies the initial learning process
of Logic Calc and provides for easy modifications to Logic Calc
for specific applicatiouns.

The Logic Calc driving program can simulate controlling
digital components at several levels of abstraction. During the
simulation, the driving program can function as a controlling
processor, a microcontroller, or it can simply drive a clock.
Section 4.4 details the development of a driving program used to
drive a clock. For the microprocessor design presented in Section
5, the driving program functions as the microcontroller and clock
driver. Several Lisp functions have already been provided by Logic

Calc to aid in the development of the driving program.

3.2.7.1 THE "PRINT-SPREADSHEET" FUNCTION
The Logic Calc function "Print-Spreadsheet" should be one
of the first Lisp functions evaluated. This function will simply

display the spreadsheet on the screen.

PP AR AL TP e e et Tt A e A
8, .'-"l ..A. "\ e Ay

......

Gy ST T NN N
' \-w.\ s NN ! :"‘:\ .!\:\ '!"""'a‘ " e ""‘)}.z_‘.a_.n_

-rer

g L e e

B OV e o NN B

O AT WK X R

49

3.2.7.2 THE "CALC" FUNCTION

The iogic Calc function "Calc" should be used to
recalculate the spreadsheet. This is identical to selecting "Calec"
from the Logic Calc Main Menu. If the Lisp keyword "no-redisplay"
is included as an argument and set to "t", then the display will
not be updated after a recalculation. Use of the "no-redisplay"”
construct speeds up simulations where interim results are not

checked.

3.2.7.3 THE "LOAD-CELL" FUNCTION

The Logic Calc function "Load-Cell"™ can be used to load
an integer value into any cell. This function simply updates the
"value" and "changed-value" items in the cell's property list. It
does not change the type of cell. This function can be used to
simulate any external input (Load, Reset, Databus Input...) or
loading of registers controlled by the driving program. The two

parameters for this function are:

1. Cell Location (i.e. "Al2").

2. Value to be loaded.

3.2.7.4 THE "RESTART" FUNCTION.
This function can be evaluated at anytime during a
driving program to return to the editing mode. This gives the

user an opportunity to temporarily stop an automatic simulation to

P T T A e S R
.I A ~‘ ¢.. LN ."" J

el et fm"&tﬁ’ﬂ

b e TG I I

50
examine values or to return to circuit construction after an

automatic simulation.

3.2.7.5 USER-DEFINED FUNCTIONS

The user can write his own functions to tailor Logic Calc
to specific applications. Also, a the Lisp function "Defun" in a
driving program can be used to name cell, greatly increasing
documentation of cell formulas. For example, the following Lisp
functions can be used to name two cells as data buses and a third
cell as a control signal:

(Defun DatabusA () (Cell F4)

(Defun DatabusB () (Cell F5)

(Defun Control () (Cell C5)
A cell formula, using a Lisp conditional construct, that simulates

a selector can now be written in a self documenting form:

(Cond ((Equal 0 Control) (DatabusA))
((Equal 1 Control) (DatabusB)))

This method of naming cells through use of a driving program was
used extensively in the microprocessor presented in Section 5.
A more complicated driving function can simulate a microcontroller
by checking the values of the cells that function as clocks and
cells that simulate the status register and instruction register.
Based on the contents of these cells, the function "Load-Cell" may
be utilized to load the microinstruction register. The micro-

processor presented in Section 5 utilizes this feature in its

driving program, which is listed in Appendix 2.

DIGITAL SYSTEM SIMULATION WITH LOGIC CALC

Generally, the components in a digital system operate in
parallel with a common clock synchronizing operations. A digital
system also includes numerous combinational logical circuits that
form intercomnections between the parallel components. These
interconnections often form circular references: the output of
Unit A is an input to Unit B, and the output of Unit B is the
input to Unit A. Figure 12 depicts this concept of a digital
system. A spreadsheet serves as a useful tool to simulate a
digital system because of its fundamental abilities to map
parallel operations and their circular interconnections onto a
single, serial processor. The methods that Logic Calc utilizes to

accomplish this mapping are presented in this section.

4.1 LOGIC CALC SIMULATION OF PARALLEL OPERATIONS

In a digital system, the input into each register must be
resolved before that register is clocked. This input is usually a
logical combination of other registers, memory, and control
signals, To simulate a digital system, a spreadsheet must
maintain the proper relationships between components. For
example, if a Logic Calc spreadsheet was made to model the circuit

in Figure 13, six cells would be needed to simulate the

51

L 'f:'.':'f‘f:’.v .l

oy
O,

[REREN] AR AT AN AN la Hin g% 850 8% 4% $'2 82 4'a 22 &' ' Noatoat ot & v .t

52
A B
R R
E E
INPUT (I} ? ouTPuT
— S S ——b
T T
. E E
R R
CLOCK
—ed 2 CLK 2 K]
T N\ \
R
E .
G ,
Combinational I i
T
E
R
pax |
C

Figure 12. Concept of a Digital System

MR I T A L P P N LN LIS - g SNt m Y
e e A S AL LN LN

wcCw> 3> 0

R

A E

G

1

Combinational S

Logic T

E

D R
A

T A
A
B
U
S
B

R

. E

T G

A){

B S

U g T

s E

R
C

B

Figure 13. Example Digital Circuit

\
vt

)

WAOAN

f
Jetoed,

l!‘\rf‘ !

W6

54
components: one for each data bus, one for each register, and one
for the combiﬁational.logic circuit. In this example digital
system, the output of the combinational logic circuit must be
resolved before clocking of Register A. Similarly, in logic Calc,
the equation for the cell representing the combinational logic
circuit must be calculated before the equation for the cell
representing Register A. Also, in the example digital system, the
clocking of both registers occurs in parallel. In Logic Calc, the
order of calculation for the cells representing the two registers
is not important: independent parallel operating components can

be calculated one at a time without regard to order.

4.1.1 SOLUTION TO THE RECALCULATION PROBLEM

In order to correctly map the parallel components with
their interconnections onto a spreadsheet, two solutions to handle
the order of cell recalculation are possible. The first would be
to maintain a list during spreadsheet editing that describes
dependency relationships and the order of cell recalculation and
utilize this list during spreadsheet recalculation. This method
was not chosen in the design of Logic Calc due to the complex data
structure that would ariseuand the problems with circular
references discussed in Section 4.2. Rather, the solution used in
Logic Calc 1is patterned after that used in Lotus 1-2-3. This
solution utilizes a check of the parameters to each cell formula

during spreadsheet recalculation. If a parameter of a cell formula

o

TIRECDLs) | R

oy o T

AL b A

“r‘

4%
D

P

w_a»_~o ~

- -

PO SR L A

)

TR TS IR T
ORI O g A

e

(N .n.l‘..

55

is another formula cell, recalculation of the first cell is
postponed until the s§éond cell is recalculated. For example,
during recalculation of cell F4, if a parameter of the cell Fi4's
formula is found to be cell F16 and Fl16 is also a formula cell,
the recalculation of cell F4 is postponed and the recalculation of
cell F16 is begun. When cell F16 has been recalculated, the

recalculation of cell F4 may be continued.

4.1.2 IMPLEMENTATION OF THE RECALCULATION SOLUTION

To implement this solution in Logic Calc, a global list
of all formula cells is maintained in the chronological order in
which they were entered into the spreadsheet. This global list is
stored in the variable "Formula-List." The recalculation flag in
the cell property list is also used to prevent a formula cell from
being recalculated more than once during a single spreadsheet
recalculation. A spreadsheet recalculation is accomplished by
first setting all formula cell's recalculation flag to nil. Next,
each cell listed in "Formula-List" is sequentially recalculated.
The first step during recalculation of a cell is to test the
recalculation flag. If the flag is set to "true," the
recalculation of that cell is terminated. If the flag is "nil,"
the flag is set to "true” and the recalculation of that cell's
formula is initiated. During recalculation of the cell's formulsa,

if another formula cell is found to be a parameter of the formula,

N) ". ry ,qn‘-'(‘]vf\ ."7.“‘ ~ ,\-1_-.(\--1._\"\.1' .P d'.‘ “u \‘\..¢ -~ "-\.'.'."5.*\.\'\.\-‘:’\;’
IR 979 87, L al hal)

B0 8. W,

4

56
the current recalculation is postponed until recalculation of the
cell used as a parameter is accomplished. Tables 2, 3, and 4 show
that this method of recalculation produces identical results
regardless of the ordering of of "Formula-List." The asterisk in
the "Processing”™ column of these tables identifies which cell is

being processed in each step.

4.2 CIRCULAR REFERENCES

Digital systems of appreciable size will have circular
references. Logic Calc's method of recalculation handles circular
references of cells with predictable results. The simplest
example of a circular reference is a cell functioning as a
counter. If cell Al were to have the formula (+ 1 (Cell Al)), a
circular reference is established because this cell refers to
itself. The Logic Calc program will increment this cell by one
for each spreadsheet recalculation. Table 5 shows the steps taken
when recalculating a spreadsheet with this example circular
reference. Logic Calc also handles more complex circular
references, involving several cells, regardless of the ordering of
the entries under "Formula-List." The microprocessor described

in Section 5 presents several examples of circular references.

4.3 NON-CONVERGING CIRCUITS
If a circuit that does not converge i{s simulated. a

circular reference must be present and the results will be

-
e e

el

« 5= -
- - ,‘..‘5-

| AP RARA

A

=EISEE A

-
",

‘: UV . P

LYy

1)

2)

3)

4)

5)

6)

5 7 W,

Ordering Cell Formula Value Recalc Flag :
) Bl (+ 1 (Cell B17)) xXx Nil W
2 Bl7. (+ 1 (Cell B29)) xxXx Nil .
3 B29 (+ 3 4) XxXx N{l Al
"
LN}
All formula cell's recalculation flag set to nil. n
Processing Cell Formula Value Recalc Flag -
* Bl (+ 1 (Cell B17)) XXX T ~)
Bl7 (+ 1 (Cell B29)) xxXx Nil w3
B29 (+ 3 4) XXX Nil -,:
Cell Bl's recalculation flag set but evaluation postponed. o
Processing Cell Formula Value Recalc Flag 2
Bl (+ 1 (Cell B17)) XX T oy
* Bl7 (+ 1 (Cell B29)) XX T "~
B29 (+ 3 4) XXX Nil »
Cell B17's recalculation flag set but evaluation postponed. ,)
"‘-
Pyl
Processing Cell Eoxmula Value Recalc Flag ¥
Bl (+ 1 (Cell B17)) XXX T “'
Bl7 (+ 1 (Cell B29)) XX T
* B29 (+ 3 4) 7 T
N
Cell B29's recalculation flag set and value set to 7. '
Processing Cell Formuls Value Recalc Flag J
Bl (+ 1 (Cell B17)) XXx T Py
* Bl?7 (+ 1 (Cell B29)) 8 T .
B29 (+ 3 4) 7 T &
o
Cell Bl7's evaluation continued resulting in a value of 8. N
l
Processing Cell Formula Value Recalc Flag N,
* Bl (+ 1 (Cell B17)) 9 T
Bl7 (+ 1 (Cell B29)) 8 T ot
B29 (+ 3 4) 7 T ::.
I("
Cell Bl's evaluation continued resulting in a value of 9. .;‘:.
d
,,\:,
TABLE 2. ORDER OF EVALUATION (FORMULA LIST: Bl, Bl17, B29) |‘.-

....... s e e, .
R A L N P S A A N N
S P NS YO AL YA SR S L

DR TR

s

L e o

e

N

1)

2)

3)

4)

3)

-
LI WM UM N

58

Ordering Cell Formula Value Recalc Flag
3 Bl (+ 1 (Cell B17)) XXX Nil
1 Bl17 (+ 1 (Cell B29)) X Nil
2 B29 (+ 3 &) XXX Nil

All formula cell's recalculation flag set to nil.

Processing Cell Formula Value Recalc Flag
Bl (+ 1 (Cell B17)) X Nil
* Bl17 (+ 1 (Cell B29)) XXX T
B29 (+ 3 4) b'o.0 ¢ N{il

Cell B17's recalculation flag set but evaluation postponed.

Processing Cell Formula Value Recalc Flag
) Bl (+ 1 (Cell B17)) XXX Nil
Bl17 (+ 1 (Cell B29)) p6.0.4 T
* B29 (+ 3 4) 7 T

Cell B29's recalculation flag set and value set to 7.

Processing Cell Formula Value Recalc Flag
Bl (+ 1 (Cell B17)) X Nil
* Bl17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 &) 7 T

Cell Bl7's evaluation continued resulting in a value of 8.

Processing Cell Formula VYalue Recalc Flag
* Bl (+ 1 (Cell B17)) 9 T
B17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 4) 7 T

Cell Bl's recalculation flag set and value set to 9.

TABLE 3. ORDER OF EVALUATION (FORMULA LIST: Bl17, B29, Bl)

IR
L.

!

JETCUAN T RS A T N A R R R AR L ALY

Nt ¢ . - RN
MAOAA IA A aU Ce Ca X AUT Ka C NO X CataOta s A AN ’

59
Qni:nnx Cell Foxrmula Value Recalc Flag
‘ Bl (+ 1 (Cell B17)) b 6.0.4 Nil
2 Bl7 (+ 1 (Cell B29)) xxx Nil
1 B29 (+ 3 4) XX Nil
1) All formula cell's recalculation flag set to nil.
Processing Cell Formula Value Recalc Flag
Bl (+ 1 (Cell B17)) h.0.0.¢ Nil
Bl17 (+ 1 (Cell B29)) xx Nil
* B29 (+ 3 4) 7 T
2) Cell B29's recalculation flag set and value set to 7.
Processing Cell Formula Value Recalc Flag
Bl (+ 1 (Cell Bl17)) XXX Nil
* B17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 4) 7 T
3) Cell Bl7's recalculation flag set and value set to 8.
Bms_es_s.inzﬁzll Foxrmula Value Recalc Flag
Bl (+ 1 (Cell B17)) 9 T
Bl17 (+ 1 (Cell B29)) 8 T
B29 (+ 3 4) 7 T

4) Cell Bl's recalculation flag set and value set to 9.

TABLE 4. ORDER OF EVALUATION (FORMULA LIST: B29, Bl7, Bl)

E’ LM L R Ay e N e o e N I N N T NS IR A S v

P AL U Se a's €8 €'a €2 844 ‘2. 0's #'8 42 4" - b b a8 2 '2 88 $'8.% 8 60 42,0 5.6 a0 A 000 a0 ok

60

Cell Formula Value Recalc Flag
Al0 (+ 1 (Cell Al0)) 9 Nil

1) All cell's recalculation flag's are set to nil

Cell Formula Value Recalc Flag
Al10 (+ 1 (Cell Al0)) 9 T

2) Cell AlO0's recalculation flag is set but evaluation postponed
in order to evaluate its paramater (which is also AlQ).

Cell Formula Value Recalc Flag
Al0 (+ 1 (Cell Al0)) 9 T

3) Evaluation of Cell Al10 is begun recursively, but this time the

check of the recalculation flag ends the recursive evaluation
with no changes made.

Cell Formula Value Recalc Flag
Al0 (+ 1 (Cell Al0)) 10 T

4) The original evaluation of Cell Al0 is continued resulting
in a value of 10.

TABLE 5. LOGIC CALC'S METHOD OF HANDLING A CIRCULAR REFERENCE

L)
LIV Y S
U g M)

e __:-'. . o,
R, A S T L T LY

PN DY R T O P NSO OO O L $ NN TN IR YN IR U Chopti atg R VR Vi LPh Vet vy _Wa g v Ve~ G4 83 & VY

s,
J
)
'
:
61 :
d;éendent on the ordering of the entries under "Formula-List." An
example of su;h a circuit is shown in Figure 14. The output of E.
each adder is used as the input to the other adder. This circuit n
will never converge to constant values for both adders. Such a Y
circuit can be simulated by two cells. Tables 6 and 7 demonstrate ii
that different orderings of "Formula-List" will produce different ?’
results for a spreadsheet recalculation. When designing a digital :
system, care must be taken to avoid non-converging circuits i
because Logic Calc will not identify non-converging circuits as }!
errors and will give misleading results. j
4.4 CLOCKING OF A DIGITAL SYSTEM ?
A fundamental aspect of a digital system is that many :f
components utilize a clock to load registers and synchronize 5
operations. Logic Calc presents a simple way for simulating the E
clock in a digital system. Every recalculation of the spreadsheet ;
can be made to simulate one of four states to a clock: the rising
edge, the high level, the falling edge, and the low level. To ;
accomplish this, one of the cells within the spreadsheet can be
made to iterate between four values with each value describing one R
of the four states of the clock. Other cells, functioning as ;:
clocked digital components, can use conditional constructs in ;l
their cell formulas to test the value of the "clock" cell. This ;{
will enable the cells functioning as clocked digital components to E‘
act differently for each state of the simulated clock. .
e
3
3
T A T S S S A T S T S O R D G S R S A "y

62

.t

b WA

> WIWMOU»

W MmO O>»

Figure 14. Non-Converging Circuit

.,
.

VAN S T TR T Y T A e T A O AT N Y
Y TN A O AT LU C X O . y
| IS R N A AN e ER AR NI RLT LHAN NV A AN

63

Ordering Cell Formula Value Recalc Flag
1 - F15 (+ 1 (Cell F16)) 0 Nil
2 F16 (+ 1 (Cell F15)) 0 Nil

1) All cell's recalculation flag's are set to nil.

Processing Cell Formula Value Recalc Flag
* F15 (+ 1 (Cell F16))] T
F16 (+ 1 (Cell F15)) 0 Nil

2) Cell F15's recalculation flag is set but evaluation postponed.

T w

Processing Cell Formula Value Recalc Flag
Fl15 (+ 1 (Cell Fl6)) 0 T
* Fl6 (+ 1 (Cell F15)) 1 T

3) Cell Fl6's recalculation flag is set and value set to 1.

Processing Cell Formula Value Recalc Flag
* F15 (+ 1 (Cell F16)) 2 T
F16 (+ 1 (Cell F15)) 1 T

wvww wwwrs

4) Cell Fl15's evaluation is continued yielding a value of 2.

TABLE 6. NON-CONVERGING CIRCUIT OF FIGURE 14.
(FORMULA LIST: F15, F16)

L ol P som ut

AN TR E Y A R T R P e N . A als 945 8,9 g0 ¢ IWREAUNE W R L8 U U U AT R AR U RO O T

64

Ordering Cell Formula Value Recalc Flag
2 F15 (+ 1 (Cell F16)) 0 Nil
1l Fl6. (+ 1 (Cell F15)) 0 Nil

1) All cell's recalculation flag's are set to nil.

oces Cell Formula Value Recalc Flag
F15 (+ 1 (Cell F16)) 0 Nil
* F16 (+ 1 (Cell F15)) 0 T

2) Cell Fl6's recalculation flag is set but evaluation postponed.

Processing Cell Formula Value Recalc Flag
* F15 (+ 1 (Cell F16)) 1 T
F16 (+ 1 (Cell F15)) 0 T

3) Cell F15's recalculation flag is set and value set to 1.

Processing Cell Formula Value Recalc Flag
F15 {+ 1 (Cell F16)) 1 T
* Flé6 (+ 1 (Cell F15)) 2 T

4) Cell Fl6's evaluation is continued yielding a value of 2.

TABLE 7. NON-CONVERGING CIRCUIT OF FIGURE 14.
(FORMULA LIST: F16, F15)

e e e ey s et e e s - S e o Ca el e
'\, y _F - -’\.,, TPL IR e }'\.’.." _;\._,.-x'..‘_\ PR TS .._\._- ATt *-'r\ VAT W ‘___‘ AR
. ; ! n.Er N . . aa P A] . cl

65

To illustrate this concept of clocking, consider a
spreadsheet with the following specification for cell A2:

Type: formula

Bits: 2

Value: O

Formula: (+ 1 (Cell A2))

Because Cell A2's bit specification restricts its value to 0, 1,
2, and 3, it can define four states of a clock with unique integer
values depicting each state:

0: Low

1: Rising Edge

2. High

3. Falling Edge
The bit specification and the circular reference of cell A2 cause
its value to cycle during multiple recalculations of the
spreadsheet. For each recalculation of the spreadsheet, the value
of cell A2 will iterate: 0, 1, 2, 3, 0,1, 2, 3, 0, 1,

Other cell's functions may include conditional constructs
to check the value of cell A2 to determine the phase of the clock.
A D flip-flop triggered on the rising edge of the clock can be
simulated by cell C5 with the following cell formula:

(Cond ((Equal O (Cell A2)) (Cell A3)) ;A3 is the 1input to
(T (Cell C5))) ; the flip-flop

When testing a digital system on Logic Calc, clocking of

the digital system can be initiated in two ways. The user can

v "y

e a et ate e aan .-
A SN N

S SN L N LY

PR E U

66

simply click the mouse on the "Calc" item from the Logic Calc Main
Menu. This would initiate a single spreadsheet recalculation and
change the state of the clock. Four clicks on the "Calc” item
would be necessary to generate a full clock cycle. An alternative
method to generate clock signals would be to exit Logic Calc and
execute a driving program that generates clock pulses through the
"Calc" function. For example, the following driving program will
generate twenty five cycles of the clock:

(Print-Spreadsheet)

(Loop for 1 from 1 to 100 do

(Calc))

(Restart)
4.5 REGISTERS

In a digital system, several registers can be clocked at
the same time. If these registers are constructed as simple flip-
flops, the output of these registers must not be used as inputs
into other registers using the same clock edge because the output
of the first register may or may not change during the clocking
edge. Figure 15 depicts this type of circuit with registers
constructed with a single D flip-flop (ie. single-rank registers).
In this example, the output of the Y Register is unpredictable
because both registers are using the same clock edge to load their
inputs and it cannot be determined whether the output of the X

Register will change during the clocking edge. This type of

circuit construction must be avoided.

\'.\

I P "=
..... NN A PN N

67

k)
’ D FLIP-FLOP D FLIP-FLOP
R R
, E E
: G G
' 1 I
’ s s
T T
——»D | Q D ; Q&
: R R
X Y
Zcu(CLK
)
)
)
Y Figure 15. Improper Register Construction
L
[}
!
\
3

D

,‘ - » P
N ':‘l‘u n.ﬁ:'."m ' A% 'l.-"'l'.

.\ I R S R R L T R A L DI L R ey I S P
0 o o MO B ' ¥ o~ ', et - CNOAUN, A N AL
WV H Wb B S ‘ e A A ™ m_‘m.l} \.n_'.lf.m‘.!_'.rf.r:‘;§4\4,\a\4\4\4'?4\J\‘

P at sl 4. at TR AN At Q. AN RN AR RN RN RN X ¥ 3 v (3 bam -k

68

A simple method of circuit construction which aveids this
clocking problem can by accomplished by replacing each of the
single-rank registers of Figure 15 with dual-rank registers. A
dual-rank register is an elementary digital module comprised of a
collection of edge-triggered master-slave D flip-flops (Figure
16). Used as a register, it is useful in digital systems because
of its ability to feed its output into another digital component
using the same clock, even while loading new data [1, 2, 9]. Use
of dual-rank registers in a digital system eliminates the problems
of circular references. By clocking all inner ranks of the
registers with the same clock edge and all outer ranks of the
registers with the opposite clock edge, a digital system
containing cicular references is reduced to two separate,
independent systems, each containing no circular references.

In Lotus 1-2-3, several cells would be required to
simulate a dual-rank register [13). Logic Calc, however, provides
a special function for simulating a dual-rank register in a
individual cell. The "Dual-Rank-Register™ function, introduced in
Section 2, is intended to stand alone as a cell's formula and
takes four parameters:

1. Name. The first parameter must be a unique name.

This parameter creates a variable which internally
stores the output of the A flip-flop.

2. Clock A. The second parameter is a logical
expression that defines when to clock the A flip-flop
in Figure 16.

f{"f" ‘-r. w “»

v s S gk N
- -

55 s SOl R

BN S

= AR A

r

LN

-
-
A

s 5

A A

69 "

D FLIP-FLOP D FLIP-FLOP

INPUT OUTPUT ¥
| X X'

[CONTROL .
| |2 CLK CLK -

NN

'

. 8

Figure 16. Dual Rank Register

y 5% 7

U LN

0 X ’l'

"
a

a
»
L]

70

3. Clock B. The third parameter is a logical expression
that defines when to clock the B flip-flop in Figure
16. :

4, Input A. The final parameter describes the input of
the A flip-flop in Figure 16.

-
3

The cell's value is constantly set to the output of the dual rank

register, the output of the B flip-flop in Figure 16. As an

e

example, consider the following function specification:

=

(Dual-Rank-Register RegisterA (Equal 0 (Cell A2))
(Equal 3 (Cell A2)) (Cell D2))

cv«'—"

The first parameter, RegisterA, defines a global variable that is

used to hold the output of the A flip-flop. The second parameter,

v
5: (Equal O (Cell A2)), specifies that the value of cell D2, the
" fourth parameter, should be clocked into the register if the value
o of cell A2, which may be functioning as a clock, 1s equal to O.
K

:: The output of the A flip-flop is gated into the B flip-flop (and
‘

:_ available to other components) whenever the value of cell A2 {s 3.
N Further examples of the use of the "Dual-Rank-Register" function
1 are given in Section 5.

;n

2

3

\)

N

n

- .-y LS N I T P R R LI e B O I T L N N S N~y te " "
A\ CAC N N <, - > » PO e e N F AR N LIPS -..‘\ LI IR I S T T
RN NI IS Db 4 o T an da D P s o o S B e N et N S e A o e e

IR T A TR wITrToYT v wWwowy DWOWOw T

DEMONSTRATION OF LOGIC CALC'S CAPABILITIES

In order to demonstrate the capabilities of Logic Calc, a
simple microprocessor was designed using Logic Calc. The
microprocessor was patterned after the Motorola 6800 family of
microprocessors [9, 14]. It features two 32-bit general purpose
registers, two 32-bit index register, and a 32-bit stack register.
The arithmetic logic unit (ALU) consisted of only an
adder/subtracter. The status register had flags for zero,
negative, carry, and overflow, which were set/cleared depending
upon the macro instruction. Forty-eight macro instructions were
developed, including a full range of load/store instructions,
stack operations, conditional branching, and basic arithmetic
ingtructions including add, subtract, increment, and decrement.
The microprocessor is fully microcontrolled. This section
presents the steps taken to design and test this microprocessor

with Logic Calc.

5.1 DESIGN OF THE MICROPROCESSOR

Six steps were utilized to design the microprocessor.
The first step was to decide on the number, type and size of
registers, arithmetic units, and memory units. Next, the data

paths between each unit were designed. Also, a listing of macro

instructions was created. These preliminary decisions were made

DR~

LA

B Zerreel AN,

72

without Logic Calc; a simple scratch pad was used. The hardware
design at this level is presented in Figure 17. The list of macro
instructions is listed in Table 8. Logic Calc was then used to
construct each component of the microprocessor. Paralleling
construction of the individual components, fields within the
microcode instruction were assigned to control the components.
Next, the microinstructions were written and stored in the

microstore. Finally, the microcontroller was designed.

5.1.1 PRELIMINARY STEPS

With Logic Calc in the edit mode, text cells were placed
above the locations of all components to aid in documentation. A
portion of this layout is shown by Figure 18.

A clock was constructed exactly as described in Section
4.4 in Cell A2.

Logic Calc was then exited and a short driver program was
written and executed to provide self-documentation capabilities
for the cell formulas. This driver program consisted of four
parts. The first part gives names to each of the cells simulating
a digital component. A partial listing of this portion of the
driver program follows:

(Defun PC () (Cell A9)) ;Program Counter

(Defun RegA () (Cell Al5)) ;A Register

(Defun RegB () (Cell Al8)) ;B Register

(Defun RegX () (Cell A21)) ;X Register

(Defun RegY () (Cell A24)) ;Y Register

(Defun SP () (Cell A27)) ;Stack Pointer
(Defun IDB () (Cell B2)) ;Internal Data Bus

e P)

e

o

.

L S e S S N L T et
VR AT N A AL AU 2 M AL AT AT AN ACAC S A A

73

- .
xS S i

INST REG

4 ¢

4——— MDR O—L—D

External Data Bus Internal Data Bus

ALU

REG A

I,

REGB

f—» DBI

T1 11

y REG X "
\ ‘ X, i
Me',r:ory« MAR &/ ! 1
P
T ‘_,__" | REGY)
Reset + f .
PC §— + A
4> -4
‘ T A STACK REG \
-1 +1
y
Figure 17. 32-Bit Microprocessor Designed with Logic Calc

B T N T ot Lt o 0 o Y S o P o P N o (A

Opcode Instruction Opcode Instructjon
Load Immediate - Stack Operations
01 LDAI 18 PUSHA
02 LDBI 19 PUSHB
03 LDXI 1A PUSHX
04 LDYI 1B PUSHY
05 LDSI 1C POPA
1D POPB
1E POPX
Load Memory Location 1F POPY
06 LDAM
07 LDBM Arithmetic Instructions
08 LDXM
09 LDYM 20 ADD A:= A+ B
0A LDSM 21 SUB A:= A - B
22 INCA
23 DECA
Load Memory, Indexed 24 INCB
25 DECB
0B LDA, X 26 INCX
oc LDA, Y 27 DECX
0D LDB, X 28 INCY
OE LDB, Y 29 DECY

Store Memory Location

OF
10
11
12
13

Store

14
15
16
17

e

A SN

Wl s a

STAM 2A
STBM 2B
STXM 2C
STYM 2D
STSM 2E

2F

Memory, Indexed

BSR
RET
BRA
BZ
BM
BC

Branching Instructions

(Subroutine Call)
(Subroutinre Return)
(Branch Always)
(Branch if Zero)
(Branch 1if Minus)
(Branch if Carry)

Control Instruction

STA, X
STA, Y 00
STB, X
STB, Y

TABLE 8. LIST OF INSTRUCTIONS FOR MICROPROCESSOR

HALT

AR RN I NI T UM WU NI WU AUV UNU FUT. Ty v:wwmww

75

A B C D
1 CLOCK INTNL DBUS ALUREG1 MICROINSTRUCT REG
2 4 FF239821 FFFFFFFF 1000110000000001010000
3 Low
4 MEM DATREG ALUREG2 NEXT MICRO INSTRCT
5 RESET FF239821 FFFFFFFF 0AD
6 1
7 MEM ADDREG ALUCODE MICROSTORE
8 PRGM CNTR 000000AC 1 1110100000000000001101
9 000000AD 1000110000000001001001
10 DBIREGISTER ALUOUT 1000110000000010001001
11 INSTRT REG 00000015 FFFFFFFE 1000100000000100001001
12 00000015 1000100000010000001001
13 EXTNL DBUS STAT REG 1000100001000000001001
14 REGISTER A FF239821 0101 1110100000000000001001
15 FF239821 10001 10000000001010000
16 MEMR 1000110000000010010000
17 REGISTERB 0 1000100000000100010000
18 0023C3D3 1000100000010000010000
19 MEMW 1000100001000000010000
20 INDXREGX 1 10001 10000000001 100000
21 0000022B 1000110000000001101000
22 1000110000000010100000
23 INDXREGY 1000110000000010101000
24 0000022C 0001010000000000010000
25 0011010000000000010000
26 STACK REG 0101000000000000010000
27 00000045 0111000000000000010000
28 1011000000000000010000
29 0001010000000000100000
Interaction Window
Main Menu
File Size GoTo Calc Exit

Figure 18. Logic Calc Display of Microprocessor

76

(Defun EDB () (Cell Bl5)) ;External Data Bus
(Defun Adder () (Cell C12)) ;Adder/Subtracter

The second paft of the driver program was developed to
test the state of the clock, simulated by Cell A2. These functions
were used by the registers and returned a value of "T" if the
clock was in the corresponding state:

(Defun Rising () (Zerop (Cell A2)))

(Defun High () (Equal (Cell A2) 1))

(Defun Falling () (Equal (Cell A2) 2))

(Defun Low () (Equal (Cell A2) 3))

A third set of user-defined functions were used to test
the cells that simulated the Reset signal, Memory Read, and Memory
Write:

(Defun Reset () (Zerop (Cell A6))

(Defun MemR () (Zerop (Cell B21))

(Defun MemW () (Zerop (Cell B24))

The last part of the driver program consisted of a set of
user-defined functions that were used to test individual bits
within the microcode instruction register, cell D2. Up to five

bits of the microcode instruction register could be tested. The

function "Microbitp" returned a value of "T" if all bit positions

listed as parameters were 1. The function "Microbitn"™ returned a
value of "T" if all bit positions listed as parameters were 0.
These two functions were extremely valuable for two reasons.
First, they provided documentation of cell formulas. Second, and

perhaps more important, is that they provided a simple method of

B R ST N T S

- -, . P
I I S .'.I.'II' U
BN B

O S A .Y Nl Wl ST LY Y TN N

Raadin it JE et ol

\ O\ b e d g6 B0 N y YAV € 88450 0 9 2% ata ABa T2t B2k 808 9,80, 6 ¢ 4% 42 ¢'s 4" IO N VI

77
masking and testing for any combination of bits in the
microinstruction register. Such Boolean operations are lacking in
Lotus 1-2-3. The listings for these two functions follow:

(Defun Microbitp (A &Optional B C D E)
(And (Cond (E (Logbitp E (Cell D2))) (T))
(Cond (D (Logbitp D (Cell D2))) (T))
(Cond (C (Logbitp C (Cell D2))) (T))
(Cond (B (Logbitp B (Cell D2))) (T))
(Logbitp A (Cell D2))))
(Defun Microbitn (A &0Optional B C D E)
(Not (Or (Cond (E (Logbitp E (Cell D2))) (T))
(Cond (D (Logbitp D (Cell D2))) (T))
(Cond (C (Logbitp C (Cell D2))) (T))
(Cond (B (Logbitp B (Cell D2))) (T))
(Logbitp A (Cell D2)))))
5.1.2 CONSTRUCTION OF INDIVIDUAL COMPONENTS
Constructing a digital component was a three step
process. First, microcode instruction fields were assigned to
control the component. Second, the cell formula was written. The
"Dual-Rank-Register” function was used in the cell formulas for
all registers in the microprocessor. Other components, such as
the data buses and control signals that formed interconnections
between the registers, were constructed as a Boolean combination
of the registers. Although these components were not registers,
they were still controlled by bits within the microinstruction
register. The last step in constructing a digital component was
to individually test it. This was accomplished by loading dummy

values into registers and databuses, setting the microinstruction

register with a suitable value, and manually clocking the digital

Taat N e N T A N N N T N N N N L
2 A A N A O AT AL T T

aaa o o

- -

- o~

"y

- - - > -

A
W -

3

Poiiab st

!
1
)
[l
¥

T TN I T NEY]

78

s:'stem by clicking on the "Calc" item from the Logic Calc Main
Menu. It was very éasy to determine if the component was
functioning correctly. By testing individual components in this
manner, the design of the individual components within the digital
system was validated.

The next two subsections detail the construction of two
example components: the program counter and the internal data

bus.

5.1.2.1 EXAMPLE DIGITAL COMPONENT: THE PROGRAM COUNTER
The first component that was developed was the program
counter. A program counter must have the ability to be reset,
increment by one, stay the same, or load a value from the internal
databus for branching. Because its output is used by other
registers using the same clock edge, a dual-rank-register must be
used. The reset signal, set externally, and the last two bits of
the microcode instruction register are used to control the program
counter. With the logic shown by Table 9, the program counter's
cell formula is:
(Dual-Rank-Register Program-Counter (Rising) (Falling)
(Cond ((Reset) 0)
((Microbitp 0) (+ 1 (PC)))
((Microbitp 1) (IDB)))
(T (PC))))

In this example, the first parameter to dual-rank-

register, "Program-Counter,” simply provides a variable name for

WUV RN 0 o R 8) S S R A O LA TS S R A T S T IR A PR
R AT N N R R W TR R I o A N AN NN

L LTI Y1 N - M LY LN UL L A UW LA LA U A Y L FUOVTOTOVTN TN T A N al oy e a8, a8, st 1o Al 1. gty 3t

& 79

Reset Signal Microcode Bit 1 Micocode Bit 0 Functjon

- .
e -

) 0 X X Reset to Zero

(1 0 0 Remain the Same

! 1 0 1 Increment By One

" 1 1 X Clock in Internal
Data Bus

[}

D

E TABLE 9. CONTROL OF THE PROGRAM COUNTER REGISTER

!

s

§ Logic Calc to store the output of the first flip-flop of the

register as described in Section 4.5. The next two parameters,

L NE S b

1 "(Rising)" and "(Falling)," describe when to clock the two flip-
flops used to construct the register. The final argument, the
conditional construct, uses the user-defined function "Microbitp"
I, and the value of the "Reset" cell to determine what the program
A counter should clock in.

To test the program counter, the internal data bus was
3 loaded with a dummy variable., The microinstruction register was

then set with the decimal values 0, 1, 2, and 3. For each setting

;
;: of the microinstruction register, the system was manually clocked
)
[
3 with the "Calc" item on the Logic Calc Main Menu. It was quite
simple to check that the program counter was working correctly.
h)
X Thus, its design was validated very rapidly.
0
*
5.1.2.2 EXAMPLE DIGITAL COMPONENT: THE INTERNAL DATA BUS
3
;: The microprocessor has a single internal data bus as
¢ -
:: depicted by Figure 17. The internal data bus was controlled by
&
P
4
)
D)
L)
\
s
A
S A
259 1 g) f 3 W W TN Y P PR A R P Ly > RN N e e L e T e A e P ALY Ch I T T N TN
1'?';'?‘!'. ':‘l': W, 4‘: l'l’!‘\'&l‘. t"'tlkls u 5 ' A }‘ W * < ' o a0, 0 N A, ' \'-f', N "' *\vh 0

80
bits 19, 20, and 21 of the microinstruction register. These bits
simply selected which components output was to be gated onto the
internal databus. A slight problem was encountered here in the
construction of the cell formula. The cell formula can easily be
described with a Common Lisp "Case"™ macro [5,12]. Common Lisp,
however, expands its macros upon evaluation into a form that
optimizes speed and restores this expansion [12]. This results in
a cell formula that is difficult to read and edit. An alternative
cell formula is simply a large conditional statement. Although
the alternative cell formula is detailed and lengthy, its
construction was relatively easy due to the self-documenting
features of the formula. With the logic given in Table 10, the
internal data bus cell formula is:

(Cond ((Microbitn (19 20 21)) (RegA))

((And (Microbitp 19) (Microbitn 20 21)) (RegB))
((And (Microbitp 20) (Microbitn 19 21)) (RegX))
((And (Microbitp 19 20) (Microbitn 21)) (RegY))
((And (Microbitp 21) (Microbitn 19 20)) (EDB))
((And (Microbitp 19 21) (Microbitn 20)) (SP))
((And (Microbitp 20 21) (Microbitn 19)) (PC))
(T (Adder)))

It was simple to test the internal data bus. Because all
registers had been constructed at this point, no dummy values were
needed. The microcode instruction register was simply loaded with
proper values and the spreadsheet manually recalculated to update

the contents of the cell simulating the internal data bus. The

contents of the internal data bus could then be checked against

the register identified by bits 19, 20, and 21 of the

P AL B
“"')&

N

%

-~ A

TP

A N

s

* g

.

IR

\ f’ "

.-w‘-.’x:'

o' e Y T T '3

81

Microcode Instruction

Bit 21 Bit 20 Bit 19

Internal Data Bus

Copntents

Register A
Register B
Register X
Register Y
External Data Bus
Stack Register
Program Counter
Adder/Subtracter

pegeyey - X-X-X-
HHOOMKHOO
HOMFOMOKRO

TABLE 10. CONTROL OF THE INTERNAL DATA BUS

microinstruction register. With these tests, the design of the

internal data bus was validated.

5.1.3 WRITING MICROCODE

After all components were constructed and individually
tested, the microcode was written. This too was an easy process
because of Logic Calc's ability to display a cell's contents in
binary. The microcode consisted of forty-eight instructions, each
twenty-two bits wide. The microcode was stored in cells D9
through D58 as constant cells.

Microinstructions were developed to fetch an individual
macro instruction from memory and to execute each of the macro
instructions. To execute most macro instructions, only one or two
microinstructions were needed. A few macro instructions, however,
required as many as four microinstructions for execution. As each

set of microinstructions was developed for a particular macro

OGN '\"!\'[t'n'\-kv A O R R A T A
nXml A ..\Q h ﬁl \ i‘-fl-&.&-ﬁfL{L{Z“L*L(‘L\ W .'.'-'}n'_ PO B L i

) 82
instruction, they were manually loaded into the microinstruction
register, and the system was manually clocked. This provided an

! easy method for testing of the microcode. These tests validated

the design of both the macro instruction and the set of

microinstructions used to execute the macro instruction.

5.1.4 THE MICROCONTROLLER

The final element to be developed for the microprocessor
was the micrcontroller. A Logic Calc driving program was utilized
to simulate the microcontroller and drive the clock. The code
for this program was simply added to that already written for cell
naming and testing described in Section 5.1.1. The code simply
initializes the program counter to zero by loading a value of zero
into Cell A6 which acts as a Reset signal. Next, the fetch-
execute cycle of the microprocessor is initiated. The
microcontroller simply loads microcode to fetch a macro
instruction from memory and then, based on the contents of the
macro instruction register and the status register, loads
microcode to execute the macro instruction. Between each portion
of this fetch-execute cycle, the driving program cycles the clock
by evaluating the Logic Calc function "Calc"” four times. This
non-overlapped fetch-execute cycle continues until the instruction
register 1s loaded with a macro instruction of 0. This 1is the

opcode for Halt. At this point, the driving program terminates.

1
i
|

- LN r.~.."-'< . LA N L T I I
PATYA T R BN A NP R i A S P

R . [. .'-1
Y \L._\L.‘A.AL.‘IL."A_XL’L arf‘.ﬂ.h an L."._.‘IL L} AfJL_' L'f..l‘;! .J.'.x._‘

83
The complete Logic Calc driving program for this

microprocessor is listed in Appendix B.

5.2 FINAL TESTING OF THE MICROPROCESSOR
Due to the stepwise-refinement design techniques offered
by Logic Calc, a good bit of testing and validation had already
been accomplished during the design of the microprocessor;
therefore, final testing was approached with confidence.

First, the driving program was modified slightly to allow
various settings of the stepping of the microprocessor's clock.
With this modification, it was possible to select from a menu
single step, multiple steps, or full speed operations of the
microprocessor clock. If full speed operations was selected,
interim results are not displayed. This is accomplished with the
"no-redisplay" keyword in the "Calc" function. By controlling the
stepping of the clock in this manner, testing could be
accomplished at various levels of detail.

Next, single instructions were loaded in cells that
functioned as memory locations. The driving program was then
executed to drive the clock in a single step mode and function as
the microcontroller. 1Interim results were checked between each
machine cycle.

With every macro instruction checked individually, memory
was next loaded with simple sequences of instructions. The

driving program was executed to drive multiple steps of the clock.

‘ - . - W e W™

\:4,\‘.').? - :\’: . o e .(_' Jﬁ 2 __\J.‘.)\'_:;::\'."..{.' .(*.'_:."‘\J‘:-{‘-_"\-_-\':-.. v

KRR AN TN AN R ‘s t'a @2 d's 88 872 §¢ D D - D VAt ab_ - ? Tolak ab

84

This method of testing was similar to setting a breakpoint with a
debugger. With this mgthod of testing..it was easy to follow the
progress of the instruction sequence by watching key components
such as the program counter, but only the final result could be
checked in detail. Still, this wvas an effective means of testing.

Finally, a few programs were written that used a full
spectrum of the macro instructions. These programs were run at
full speed so interim results were not checked. The programs
consisted of simple multiplication by addition, division by
subtraction and squaring integers. In addition to the single-
stepped and multiple-stepped tests, these full-speed programs
validated the design of the microcontroller and the overall
performance of the microprocessor.

Because of the high amount of looping in the full-speed
programs, these tests were quite long, sometimes requiring hours
to complete. For a program to square the numbers from one to ten,
the microprocessor utilized 781 clock periods. As described in
Section 4.4, Logic Calc requires four four spreadsheet
recalculations to simulate one clock period; therefore, Logic Calc
performed this simulation by performing 3124 spreadsheet
recalculations (781 X 4). Logic Calc used 25 formula cells to
simulate the microprocessor and 24 formula cells to simulate 24
locations in RAM memory resulting in a total of 49 formula cells.

It accomplished the simulation in one hour and three minutes

Lo N,

AN NN A LT
o« % al

Ay By 4 8y

B

&
3
3

4 »
W' "!.“.0‘...!,‘

R RN e A M e

85

giving it a simulation speed of .21 clock-periods/second and a
formula recalculation rate of 40.5 formulas/second. The
simulation speed could be improved by eliminating the twenty-four
RAM formula cells and running programs which used only ROM memory.
The speed for these ROM-only simulations was .42 clock-
periods/second with a similar formula recalculation rate of 41.8
formulas/second.

Although a direct comparison between simulation speeds
between Lotus 1-2-3 and Logic Calc was not made, {t was noted
that Lotus 1-2-3 has a significantly higher formula recalculation
rate for identical cell formula entries. This apparent
performance advantage of Lotus 1-2-3 is offset by the fact that
Lotus 1-2-3 lacks the Boolean operations and specialized functions
of Logic Calc. Lotus 1-2-3 therefore requires more formula cells
than Logic Calc to design a digital system, resulting in
simulation speeds similar to Logic Calc. As a crude comparison, a
numeric coprocessor was designed with lotus 1-2-3 during previous
research at the University of Texas [13]. The complexity of this
coprocessor was similar to that of the 32-bit microprocessor
designed with Logic Calc. The Lotus 1-2-3 design, however,
required 107 formula cells and ran on an IBM PC AT with a
simulation speed of .61 clock-periods/second. The Lotus 1-2-3
simulation speed for the coprocessor is faster than that of Logic

Calc because the Lotus 1-2-3 design utilized a "clock" cell with

PN AN

T R N e L e T T e e L Rt R N LN N, .
g et .-.,-.a.,n \a.,- o EACH (a,.-_-PJ g _¢¢-.r

fo a ™)
v 8%,

86

only two states: high and low. If the Lotus 1-2-3 design was
simulated with a more precise four-state clock such as that used

in the Logic Calc design, the simulation speeds of the two spread-

sheets would be approximately the same.

CONCLUSION

6.1 SUMMARY OF RESULTS

Logic Calc was developed to be used a design tool for
digital systems. It was intended to eliminate the shortcomings of
financial spreadsheets when used as design tools. Each of the
improvement areas listed in Section 1 is summarized:

1. A Maximum value for fixed-point integers. The Lisp
programming language eliminated this shortcoming.
Lisp allows integers to be any size by providing
software to represent and operate on integers that
are larger than one data word. Integers larger than
32 bits are called expressed as "Bignums" in Lisp.
Software arithmetic routines are provided by Lisp to
allow bignums to maintain the same precision as
fixed-point integers.

2. Fixed size integers. Logic Calc eliminated this
shortcoming by providing a bit property for each
cell. This provided for a more precise mapping of
digital hardware onto a spreadsheet.

3. Lack of Boolean operations. Lisp eliminated this
shortcoming. In Lisp, a full set of Boolean
operations is available, including operations at the
bit level.

4. Lack of binary and hexidecimal display. Logic Calc
eliminated this shortcoming by providing both of
these display formats.

5. Inability to simulate some key digital components in
a single cell. Logic Calc offers much improvement in
this area, by providing the "Dual-Rank-Register"
function and allowing the user to write his own
functions. Many of the components that require
several cells in a financial spreadsheet can be
expressed as a single cell in Logic Calc.

87

~ v ama R AT e T . ISP NN LA A AN T

AT R B b
1% ..'«" f y “a h A K D

Calc's

simple,

*

L JX L)

Py Lt) ¢ aba bW ora b4t ba gte

88

6. Slow and cumbersome programmatic operation of the
spreadsheet. Logic Calc's method of using a separate
driving program is superior to Lotus macros in that
it offers full screen editing features, 1is highly
flexible, and can be compiled. A direct comparison
of speed for programmatic operation of Logic Calc and
Lotus 1-2-3, however, shows that Lotus 1-2-3 {is
slightly faster. This is probably due to the fact
that Logic Calc does not compile its cell formuias
whereas Lotus 1-2-3 partially compiles its cell
formulas. This item is addressed in the next
subsection.

7. No modification capabilities. Logic Calc eliminated
this shortcoming. High-level-language source code is
obtainable for Logic Calc. It should also be
relatively easy to modify because Logic Calc 1is
written in Common Lisp, the same language that the
user utilizes to write cell formulas, the same
language that the user utilizes to write a Logic Calc
driving program.

The design of the microprocessor presented in Section 5

was both easy and fast. The ease of testing was due to Logic

interactive nature, self-documenting capabilities, and

highly visible results. It took only three days to design and

partially test the microprocessor. This design process was a

straight-forward stepwise-refinement of the graphical

depiction of the design. Digital components were individually
designed, tested, and validated using dummy variables for
components not yet designed, As the number of validated
components grew, the number of dummy variables used to represent
them decreased. Eventually, all components were individually
designed, tested, and validated, and there were no dummy

variables. Full scale testing was next and was also was quite

R A A T e AT T e T T T A e
» . K Y. . g L) 3

N P A e PO - s "."f .->"

89
rapid: the full scale tests took several hours, but could be run
overnight. These test were sufficient to validate the design of
the microprocessor. The resulting design, completely validated,
could be passed down to the next level of design with sufficfient
detail and documentation to ensure that no design errors would be
passed down.

Logic Calc, therefore, was proven to be an effective and
efficient design tool for digital systems. It presents an ability
to completely validate a design at the architectural level, the
highest level of design. 1Its use of well-proven computer science
concepts of interaction, visibility, self-documentation, and
stepwise-refinement of the problem enable it to be used with the

greatest of ease.

6.2 FUTURE RESEARCH

Logic Calc, being a prototype, is not perfect A ..
changes to Logic Calc could improve its use as a dig:'a
tool:

1. Currently in Logic Calc, in orde: : - -
formula cell, it wmust be e-- -
Although the previous form .a .
process is frustrating ar< e--
feature formula edito: sim A
could be designed to e.:im. i,

2. Currently in Log.: a. .
a form such tha* . -
executed as a E
recajculatic: it
Logic (a.

stored (- -,

CPRPLL LN T AN

L RALAL LA RN

PR

7 AO-A185 209 LOGIC CALC: A DESIGN TOOL FOR DlGlTﬂL SVSTEHS(U) AIR 7
E INST OF TECH WRIGHT-PATTERSON
G I) ROSENBERGER AUG 87 RFIT/CI/NR-B? 55

L] 3

L T
¢ WL AIOCOON
’.,““»,1{;‘,."!. O

designed.

are:

1.

90

- need the ability to reconstruct the original cell

formula for editing purposes.

Certain errors in cell formulas, such as adding nil
to an integer, are identified by the Explorer
debugger. Although the Explorer debugger prints out
detailed error messages and 1is well-documented, a
better error-handler could be developed from within
Logic Calc. This error-handler could simply point
out errors by displaying "Error" in cells that
contain formula errors. This method, patterned after
error-handling in Lotus 1-2-3, would allow the user
the capability to rapidly detect the source of errors
without leaving Logic Calc and without learning the
operation of the Explorer debugger.

Although the file operations in Logic Calc are
adequate for most applications, it would be useful to
add more extensive file operations similar to those
offered by Lotus 1-2-3. Additional file operations
to save, retrieve, and combine portions of
spreadsheets would allow merging of spreadsheets.
This merging of spreadsheets can be used to test
alternate hardware or software within the same
design. Similarly, these additional file operations
offer an ability to design a new digital system by
assembling parts of digital systems previously
designed on Logic Calc. Assembling previously
designed and tested parts in this manner offers a
fast and flexible technique to the Logic Calc design
process.

Logic Calc, patterned after Lotus 1-2-3, retained many
" general purpose features of Lotus 1-2-3. Another version of Logic
Calc, further specialized for design of digital systems, could be

Some of the features suggested for this second version

A simulation of the digital system clock from within
Logic Calc. By including global variables and
functions describing the state of a clock simulated
within Logic Calc, digital components could be
constructed on the spreadsheet without first
constructing a clock and the functions used to test

9

its state. The display should be modified to show b
the state of the clock. Including this internally-

simulated clock would also provide a significantly

faster spreadsheet recalculation dus to the use of

global constructs to simulate the clock.

2. Special purpose cell types. In addition to the cell
types already included in Logic Calc (null, constant,
text, and formula), it would be valuable to include
special purpose cell types that simulate specific
digital components such as registers, flip-flops,
multiplexors... The user would then need to describe
only the input into the component. Further
simplification of cell construction could be achieved
by "prewiring" those special purpose cell types that
require a clock to the internally-simulated clock
described above. This method of cell construction
would be superior to use of functions such as "Dual-
Rank-Register” and its bulky list of parameters.

3. Special purpose grouping of cells. Primarily to
simulate a memory system, it would be valuable to
group cells as one component. Currently in Logic
Cale, it is necessary to have a formula for each cell
functioning as a single address location within a
memory system. This greatly adds to the number of
cells that must be recalculated during spreadsheet
recalculation. Many cell formulas could be eliminated
if a grouping of cells could operate under a single
formula. A special purpose grouping of cells could
provide this feature and thereby speed up spreadsheet
recalculation.

Another area for future research in this area would be to
design a digital system more complex than the microprocessor
presented in Section 5. It would be valuable to test Logic Calc's
capabilities to design a digital system that uses parallel or
pipelined architectural features.

Logic Calc also offers the capability to develop new
softwvare on existing digital systems. Microstore could be quickly

changed by replacing those cells that function as microstore with

S Y L T ol O O AN

92

nev cells representing the new microstore. Assemblers and loaders
could be developed as I;bgic Calc driving programs to automatically
generate binary code from assembly language mnemonics and load the
binary code in memory. A debugger could also be written as a
Logic Calc driving program to run the simulations. Logic Calc
could be used to keep track of machine cycles, memory bandwidth,
frquency of branching, and other such parameters that are
measurements of performance when developing new software. It
would be valuable to evaluate Logic Calc's ability to perform as
,_ such a software development tool.

A final area for future research would be the development
of an expert graphics editor that could interface to the front end
of Logic Calc. With such a device, digital systems could be
designed by developing a graph such as shown in Figure 5 on an
expert machine. The graphics editor could then make Logic Calc
cell entries autont;.icany. This graphics approach to digital
design would be quite interesting.

| Interested readers can contact Professor Harvey Cragon at
the Electrical Engineering Department, University of Texas at

Austin, for further information and a copy of Logic Calc.

AN OSORGACHGM) G 0% 0 GG Q \ X \J Do) WX
O M et A P R LM Nt M ML O N L X R R Mo R KO N MO, s ot 3 SO WA SO UL A SN

.‘3-".:03',.

ws Wo We wo We we we wo

APPENDIX A: LOGIC CALC SOURCE CODE

LOGIC-CALC

A SPREADSHEET PROGRAM DEVELOPED BY:

GLENN D. ROSENBERGER, CAPTAIR USAF
112 HABICHT STREET, JOHNSTOWN PA 15906
814-536-1089

DEVELOPED AT THE UNIVERSITY OF TEXAS, AUSTIN
IN THE SPRING SEMESTER, 1987

LOGIC CALC WAS WRITTEN TO BE USED AS A INTERACTIVE DESIGN TOOL
FOR DIGITAL SYSTEMS. THE PROGRAM CONSTRUCTS AN ARRAY OF CELL
OBJECTS AND THEN ALLOWS THE USER TO MANIPULATE PROPERTIES OF
THE OBJECTS VIA AN INTERACTIVE MOUSE AND KEYBOARD INTERFACE
SIMILAR TO MOST SPREADSHEETS. BY CONSTRUCTIONR OF FORMULAS THAT
SIMULATE DIGITAL LOGIC UNITS, THE SPREADSHEET CAN SIMULATE MOST
DIGITAL SYSTEMS. DURING EACH SPREADSHEET RECALCULATION, THE
FORMULAS ARE REEVALUATED AND EACH CELL IS SET TO ITS NEW VALUE.
THIS METHOD OF RECALCULATION SIMULATES THE FUNCTION OF A CLOCK
IN A DIGITAL SYSTEM.

THE PROGRAM 1S CONSTRUCTED NEARLY ENTIRELY OF LISP METHODS AND
FORMULAS, EACH OF WHICH IS DOCUMENTED IN SUFFICIENT DETAIL.
MOST FUNCTIONS ARE USED BY THE SPREADSHEET PROGRAM ITSELF, BUT
A FEW ARE DESIGNED TO BE ENTERED INTO A CELL AS A FORMULA CALL,
AND A FEW ARE DESIGNED TO BE USED IN A USER-DEFINED DRIVER
PROGRAM. THIS DRIVER PROGRAM CAN BE USED TO RECALCULATE THE
SPREADSHEET, AS WELL AS TEST AND LOAD CELL CONTENTS AND THUS
SIMULATE A CONTROLLING PROCESSOR.

THE MAIN-PROGRAM LOOP RESIDES IN THE FORMULA "RESTART". THE
PROGRAM CALLS OTHER FUNCTIONS FROM THIS LOOP BASED ON THE
USER'S INPUT. TO EXIT THE EDITING MODE THAT THIS MAIN PROGRAM
PROVIDES, THE USER SHOULD CLICK ON THE “EXIT" ITEM ON THE
PROGRAM'S MAIN MENU. SUBSEQUENT REENTRIES CAN BE ACCOMPLISHED
BY CALLING THE FUNCTION "RESTART".

SPREADSHEET FILES CAN BE STORED AND READ FROM THE LOCAL
MACHINE'S LOGIC-CALC DIRECTORY USING THE "FILES" MENU ITEM.

93

Y MY Y MNP R o T T A AT N e A S

94

The cell object is the primary data object of the spreadshest.
Property Definitions:

Type : empty, constant, string, or formula.

Value: the value of this cell, this property may be sither

an integer or a string.

Fornula: the lisp formula used to obtain the value (or nil
if not a formula cell.)

Bits: the maximum number of bits that are used to hold the
cell's value. If the value exceeds this amount, the
higher order bits are stripped. This property allows
the spreadsheet to closely simulate a digital system
by providing a specification on the size of a
digital component (in bits). The maximum value for
bits should be 127 without modifying the program.

Recalc: this is a boolean variable that is set in formula
cells during recalculation. It is necessary to
permit access to other cells in an arbitrary manner,
and allow circular references.

Changed-value: this boolean property is maintained in
order to speed up the display process. During recal-
culation, only cells whose value has changed are
redisplayed.

Output-display: X hexidecimal, B binary.

defflavor cell ((value 0) (formula nil) (bits 32)(recalc nil)
(type 'empty)(changed-value t) (output-display 'X)) ()

: :gettable-instance-variables :settable-instance-variables :

' inittable-instance-variables)

PNV B Ve W W VS B VS VL WY WS B W VI W Ve WO VS WS VS W B U

;Global variables follow with their definition and use

(defvar max-number-of-columns 300

"the maximum number of columns in any spreadsheet")
(defvar max-number-of-rows 400

 "the maximum number of rows in any spreadsheet")

(defvar number-of-rows 10

*"the current number of rows in the working spreadsheet")
(defvar number-of-columns 20

“the current number of columns in the working spreadsheet")
(defvar first-display-row 1

"the first rov printed when the spreadsheet is in view")
(defvar first-display-column 1

*the first column printed when the spreadsheet is in view")
(defvar last-display-row :unbound

"the last row displayed. Bound in print-spreadsheet")
(defvar last-display-column :unbound

"the last column displayed. Bound in print-spreadsheet”)
(defvar user-input :unbound

BAOHON0
LN q!_;"u__‘ l"'

)
'

QAOHG AACHAAOAGAGACACACHGANX] G OO0 OGN AN o GAGAC
RIS P NS SN A AE A I AT o S T O o S TRt T A P i O MO AR b P VAT PALTRBLALIC PN A M M WP N

95

*The user's input to the spreadsheet during editing®)
(defvar formula-list nil
“a list cell indices -for all cells that contain formulas")

;the primary data array is a global variable named spread:
(defvar spread (make-array (list (+ 1 number-of-rows)
(+ 1 number-of-columns)))
“the array of cells that comprise the working spreadsheet")

;the user interface for data display is developed as a

; mouse sensitive window:

(defflavor spreadsheet-window ()(tv:basic-mouse-sensitive-items
tv:truncating-wvindow tv:stream-mixin))

;four item-type association lists are used with the mouse
; sensitive window
(defvar edit-1list '((cell-type cell-view
"Left: View this cell Right: Menu of Cell Operations"
("MENU OF CELL OPERATIONS" :no-select t)
("View Cell" :value cell-view
:documentation "View this cell")
("Edit Cell"™ :value cell-edit
:documentation "Edit this cell")
("Change Cell Size" :value cell-size
:documentation "Change Size of size in bits")
("Change Output Display" :value cell-output-display
:documentation "Change the output display of this cell")
("Move Cell” :value cell-move
:documentation "Move Cell to New Location")
("Copy Cell™ :value cell-copy
:documentation "Copy Cell to Another Location")
("Erase Cell™ :value cell-empty :documentation "Erase Cell"))
(row-type insert-row "left: Insert a Row
Right: Menu of Row Operations"
("Insert Row" :value insert-row
:documentation "Insert a Row at this Location")
("Delete Row"™ :value delete-row
:documentation "Delete this Row")
("Move Row" :value move-row
:documentation "Move all Cells in this Row to a New Row")
("Copy Row" :value copy-row :documentation
*Copy all Cells in this Row to another Row"))
(column-type width
"Left: Change Column Width
Right: Menu of Column Operations”
. ("Change Column Width" :value width
. :documentation "Change Column Width")
' ("Insert Column” :value ingsert-column

OGN X ‘ X § O CODEN Ot X St RON0E oot

96

:documentation "Insert a Column at this Location")
("Delete Columm" :value delete-column
:documentation "Delete this Columm")
("Move Column” :value move-column
:documentation
*Move all Cells in this Column to a New Column")
(*Copy Column" :value copy-column
:documentation :
"Copy all Cells in this Column to another Column")))
"Edit-list is the primary mouse sensitive item-type
association list. Used during edit mode")

(defvar cell-move-copy '((cell-type mark
*Left: Make this cell target location
Right: Select or Abort"
("MENU" :no-select t)
("Select this cell®" :value mark
:documentation "Make this cell target location")
("Abort Move/Copy Operation® :value abort
:documentation "Do not perform Move/Copy Operation®")))
"Cell-move-copy is a mouse sensitive item type association
list. Used when moving or copying cells")

defvar row-move-copy '((row-type mark
*Left: Make this row target location
Right: Select or Abort"
("MENU" :no-select t)
("Select this row" :value mark
:documentation "Make this row target location")
("Abort Move/Copy Operation® :value abort
:documentation "Do not perform Move/Copy Operation")))
"Row-move-copy is a mouse sensitive item type association list.
Used when moving or copying rows")

(defvar column-move-copy '((column-type mark
*Left: Make this column target location
Right: Select or Abort"
("MENU" :no-select t)
("Select this column”" :valus mark
:documentation "Make this column target location")
("Abort Move/Copy Operation® :value abort
:documentation "Do not perform Move/Copy Operation")))
*Column-move-copy is a mouse sensitive item type association
list. Used when moving/copying columns®)

(defvar program-constraint-window

(make-instance 'tv:bordered-constraint-frame
' :panes

0y OO0 KA AN 7 1 M L VST T TN

97

' ((spreadsheet-pane spreadsheet-window
:1abel (:string "LOGIC CALC"
:font fonts:bigfnt :centered :top)
:blinker-p nil ’
:item-type-alist edit-list)
(main-menu-pane tv:command-menu
:item-1list
(("File" :value file :documentation
*Read or Write Spreadsheet Files")
("Size" :value size
:documentation "Change Worksheet Size")
("Go To" :value go-to :documentation
*Show a differant region in Spreadsheet")
("Calculate” :funcall calc :documentation
"Make a single Worksheet Recalculation”)
("Exit" :value exit
:documentation "Exit Logic Calc"))
:default-font fonts:courier
:label (:string "MAIN MENU"
:font fonts:courier :centered))
(interaction-window-pane tv:window
:label (:string "INTERACTION WINDOW")))
':constraints
'((main . ((spreadsheet-pane
interaction-window-pane main-menu-pane)
{(spreadsheet-pane 530))
((main-menu-pane :ask :pane-size))
((interaction-window-pane :even))))))
*Program-constraint-window is a constraint window for the
spreadsheet, interaction-window and menu. This variable
describes the size and position of these three windows")

(defvar spreadsheet (zend program-constraint-window
':get-pane 'spreadsheet-pane)
*spreadsheet gives access to the spreadsheet window in the
program-constraint-window")

(defvar interaction-window (send program-constraint-window
':get-pane 'interaction-window-pane)
*interaction-window gives access to the interaction-window in
the program-constraint-window®)

(defvar main-menu (send program-constraint-window
':get-pane 'main-menu-pane)
*main-menu gives access to the main-menu window in the
program-constraint-windovw")

Eai Wk DCE D 0
oty lf"«‘;"'i.'—"" ‘?‘v’vt"}l‘t“.‘:' it

- e e

98

(defvar program-io-buffer (tv:make-fo-buffer 500.)
*the program's 1o buffer")

;the column object is developed to hold three properties:

; letter: gives unique column fidentifier to each column

; width: the printed width of the column

i position: the x-coordinate on the screen for the beginning

: of the colunn. This is needed during redisplay of

; individual itens.

(defflavor column-flavor (letter (width 20) position)()
:gettable-instance-variables :settable-instance-varisbles
:inittable-instance-variables)

(defvar column (make-array (+ 1 max-number-of-columns))
“an one dimensional array of column objects. Initialized
in the restart function.")

iwhen invoked the make-constant method sets the cell type to
; 'constant and the value to the provided input-value.
(defmethod (cell :make-constant) (input-value)
(let ((cell-bits))
(send self :sget-type 'constant)
;Right justify cell's value to the specified number of bits.
; The complicated shifting for large cell sizes is necessary
; because byte operations only work with fixnums as byte
; specifiers.
(send self :set-value
(cond ((> 64 (setq cell-bits (send self :bits)))
(1db (byte cell-bits 0) input-value))
(t (+ (ash (1db (byte (- cell-bits 63) 0)
(ash input-value -63)) 63)
(1db (byte 63 0) input-value)))))
(send self :set-changed-value t)
(send self :set-formula nil)))

;when invoked the make-text method sets the cell type to 'text
; and the value to the provided input-value
(defmethod (cell :make-text) (input-value)
(send self :get-type 'text)
(send self :set-value input-value)
(send self :set-changed-value t)
(send self :gset-formula nil)
(send self :set bits 32))
;when invoked the copy method gets tthe cell's type, value,
; formula, bits, and recalc properties to the same values as the
; properties of the cell located at i j.
(defmethod (cell :copy-cell) (i j)

RUALAONLEG 2 V) W G 0 M W) » () v SO WA C, U
e T 8 e e e T L T T T e T Y,

X W Y

99

(send self :set-type (send (aref spread 1 j) :type))

(send self :set-valus (send (aref spread i j) :value))
(send self :set-formula (send (aref spread i j) :formule))
(send self :set-dits (send (aref spread 1 j) :bits))

(send self :set-vecalc (send (aref spread i j) :recalc))
(send self :set-changed-value t))

;when invoked the make-formula method sets the cell type to
; 'formula and the formula to the provided input-formula.
(defmethod (cell :make-formula) (input-formula)

(send self :set-type 'formula)

(send self :set-formula input-formula)

(send self :set-recalc nil)

(send self :set-changed-value t))

(defun column-string (Jj)
"Returns a string corresponding to the supplied column number"
(let ((first) (second))
(cond ((< J 27)(make-string 1 :initial-element (+ 64 j)))
(t (progn (multiple-value-setq (first second)
(truncate j 26))
(cond ((equal second 0)
(progn (setq first (- first 1))
(setq second 26))))
(concatenate 'string
(make-string 1 :initial-element (+ 64 first))
(make-string 1
:initial-element (+ 64 second))))))))

;the next four functions are called to prompt the user for more
; data in the development of differant types of cell objects.
; The program's formula 1list is updated constantly.
(defun make-empty-cell (1 j)

"makes the cell at location i j empty by simply creating

a new cell object”

(aset (make-instance ‘cell) spread i j)

(setq formula-list

(remove (list 1 j) formula-list :test 'equal)))

(defun make-constant-cell (i j)
"prompts the user for an input and makes the cell at location
(1 J) a constant cell if the user supplied a valid value"
(let ((input-value))
(cell-view {1 j)
(write-string "Enter decimal int:ger for this cell
(Prefix: #X: hex, #0: octal, #B: binary): *
interaction-window)
(tv:turn-on-sheet-blinkers interaction-window)

W

[N DA |
a'i‘ ‘l’.’i‘.o’l‘\'l.OA AN}

(setq input-value (resd-from-string
: (read-line interaction-window) nil 0))
(cond ((integerp input-value)
(progn
(setq formula-list
(remove (list 1 j) formula-list :test ‘equal))
(send (aref spread i j) :make-constant input-value)))
(t (send interaction-window :beep)))))

(defun make-string-cell (i J)
"prompts the user for an input and makes the cell at location
(1 §j) a text cell if the user supplied a valid value”
(let ((input-value))
(cell-view 1 J)
(vrite-string "Enter text entry for this cell: *
interaction-window)
(tv:turn-on-sheet-blinkers interaction-window)
(setq input-value (read-line interaction-window))
(setq formula-list
(delete (list i j) formula-list :test ‘'equal))
(send (aref spread i j) :make-text input-value)))

(defun make-formula-cell (i j)
"prompts the user for an Lisp formula input and makes a formula
cell at location (1 j)"
(let ((input-value))
(cell-view { J)
(write-line "Enter lisp formula for this cell: *
interaction-window)
(tv:turn-on-sheet-blinkers interaction-window)
(setq input-value
(read-from-string (read-line interaction-window) nil nil))
(cond ((listp input-value)
(progn
(setq formula-list
(delete (aref spread i j) formula-list))
(send (aref spread i j) :make-formula input-value)
(evaluate-cell 1 })
(setq formula-list (cons (list 1 j) formula-list))))
(t (send interaction-window :beep)))))

(defun format-cell (1 j)

"returns a string that represents the cell's value. If the
value is a text string, it is right-trimmed to fit in the
current column width. If the value is an integer, but too
large to be displayed properly, a string of astericks is
returned.”

(let ((printed-width)

101

(display)

(column-width (send (aref column j) :width))

(value (send (aref spread i j) :value)))

(case (send (aref spread 1 j) :type)
('empty (make-string column-width :initial-element 32))
('text (subseq (format nil "~VA" column-width value)
0 column-width))

(otherwise

(cond ((integerp value)

(progn (setq printed-width
(case (setq display (send (aref spread i j)
:output-display))

('X (ceiling
. (send (aref spread i j) :bits) 4))
+ ('B (send (aref spread i j) :bits))))
(cond ((<= printed-width column-width)
(case display ;hex or binary
('X (format nil "~VA" column-width
(format nil "-V,'0X"
printed-width value)))
i ('B (format nil "~VA" column-width
u (format nil *~V,'0B"
iy printed-width value)))))
(t (make-string column-width
:initial-element 42)))))
vy (t (subseq (format nil "~VA" column-width value)
’ 0 column-width)))))))

. (defun print-spreadsheet ()
: "the entire spreadsheet is reprinted, including row and column
. numbers. This is a slower print function, but must be used {f
K column width have changed or the user wants to view another
*] portion of the spreadsheet."
¢ (let ((display-row 2))
(send spreadsheet :select)
(send spreadsheet :clear-screen)
(send spreadsheet :increment-cursorpos 10 0 :character)
(setq last-display-row
(min (+ 35 first-display-row) number-of-rows))
(block column-letters
;print out column headers until there is no more room
; Or no more columns
(loop for j from first-display-column to number-of-columns do
(if (< (+ (send (aref column j) :width)
(send spreadsheet :read-cursorpos :character)) 160)
(progn (send (aref column j) :set-position .
‘ (send spreadsheet :read-cursorpos :character))
(send spreadsheet :item 'column-type

3

T

oy

.

R

M

ey ’ - ot S A R 'S A" TN A T A RN . LI Y LTy WA AR L
O O T A O D T DA A A N NI S NS MM%L) :&i\i\i‘i‘-ﬁﬁ'&ﬂﬂlﬁ& I ﬁ;d

102

(list j) (send (aref column j) :letter))
(send spreadsheet :increment-cursorpos
(- (send (aref column j) :width) 1)
0 :character)
(setq last-display-columm j))
(progn (setq last-display-column (- j 1))
(return-from column-letters)))))
;print each cell as a mouse sensitive item
(loop for i from first-display-row to last-display-row do
(send spreadsheet :set-cursorpos 3 display-row :character)
(send spreadsheet :item 'row-type (list i)
(format nil *-A" 1))
(loop for j from first-display-column to
last-display-column do
(send spreadsheet :set-cursorpos
(send (aref column j) :position) display-row :character)
(send spreadsheet :item 'cell-type (list i j)
(format-cell 1 j))
(send (aref spread 1 j) :set-changed-value nil))
(setq display-row (+ 1 display-row)))
(send interaction-window :select)
(tv:turn-off-sheet-blinkers interaction-window)))

(defun print-spreadsheet-changed-items ()
"p faster print function. This can reprint the updated cells
without reprinting column letters and row numbers. Because
values are bound for last-display-row and last-display column
are bound in print-spreadsheet, no computation of these values
is necessary."

(let ((display-row 2)(output-string))
(send spreadsheet :select)
;print each cell that has changed-value set to true and
;update changed value flags
(loop for i from first-display-row to last-display-row do
(loop for j from first-display-column to
last-display-column do
(cond ((send (aref spread i j) :changed-value)
(progn
(send (aref spread 1 j) :set-changed-value nil)
(setq output-string (format-cell 1 j))
(send spreadsheet :set-cursorpos
(send (aref column j) :position)
display-row :character)
(send spreadsheet :clear-string output-string)
(send spreadsheet :item 'cell-type
(list { j) output-string)))))

(setq display-row (+ 1 display-row)))
(send interaction-window :select)
(tv:turn-off-sheet-blinkers interaction-window)))

(defun row&col (cell)

*returns two values corresponding to the indices of the cell
name entered as an argument. If the cell name does not
correspond to a valid cell, nil is returned. This function is
called often and designed for speed.”

(let* ((cell-name (format nil "~A" cell))

(column-number (- (char-code (char cell-name 0)) 64))
(possible-column-number)
(start-integer 1) (row-number))
{(cond ((or (< (length cell-name) 2)
(C 1 column-number) (< 26 column-number))
(progn (send interaction-window :beep)
(return-from row&col nil))))
;test for second character to be a letter
(setq possible-column-number
(- (char-code (char cell-name 1)) 64))
(cond ((and (< O possible-column-number)
(> 27 possible-column-number))
(progn (setq column-number (+ possible-column-number
(* 26 column-number)))
(setq start-integer 2))))
(setq row-number
(parse-integer cell-name :.start start-integer
:junk-allowed t))
(cond ((and (integerp row-number) (plusp row-number)
(<= row-number number-of-rows)
(plusp column-number)
(<= column-number number-of-columns)
(<= column-number number-of-columns)
(<= row-number number-of-rows))
(values row-number column-number))
(t (progn (send interaction-window :beep)
(return-from row&col nil))))))

(defun evaluate-cell (1 j)

"When called to evaluate a cell, this function evaluates the
form stored in cell (1 j) if the cell type is a formula. It
must first test and set the recalc flag to true, so that
circular references will be handled correctly. The specified
byte is removed from the computed value and the cell's value
is updated to match this byte."”

(let ((previous-value) (computed-value) (new-value)(bits))
(cond ((and (equal 'formula (send (aref spread i j) :type))

(not (send (aref spread i j) :recalc)))

A AR ":'-!'-"r-.'r" A AT A AT A T

S AN f.f.f.num TNOR -- o r i‘.'{

N AR

104

(progn
(send (aref spread 1 j) :set-recalc t)
(setq previous-value
(send (aref spread 1 j) :value))
(setq computed-value
(eval (send (aref spread i j) :formula)))
(cond ((integerp computed-value)
;remove byte specified by digits.
(progn
: (cond ((> 64 (setq bits
t (send (aref spread i j) :bits)))
(setq new-value (1db (byte bits 0)
computed-value)))
(t (setq new-value
(+ (ash (1db (byte (- bits 63) 0)
o (ash computed-value -63)) 63)
: (1db (byte 63 0)
) computed-value)))))
' (send (aref spread i j) :set-value new-value)
(cond ((not (equal previous-value new-value))
i (send (aref spread i j)
. :set-changed-value t)))))
y (t (progn (send (aref spread i j)
. :set-value computed-value)
‘ (send (aref spread i j)
:set-changed-value t)))))))))

¢ (defun cell-view (1 j)
! "Allows the user to view the cell that was clicked upon"
v (let ((type (send (aref spread i j) :type))
(output-value (send (aref spread i j) :value)))
(send interaction-window :select)
(send interaction-window :refresh)
(send interaction-window :clear-screen)
(write-string "Cell " interaction-window)
(write-string (column-string j) interaction-window)
(prinl i interaction-window)
(write-string ": Type: " interaction-window)
(prinl type interaction-window)
(fresh-line interaction-window)
(write-string "Value: " interaction-window)
(prinl output-value interaction-window)
' (cond ((not (stringp output-value))
(progn
(vrite-string " (Decimal), " interaction-window)
(format interaction-window "~X (Hexidecimal)"
(send (aref spread i j) :value))
(write-string * Bits: ™ interaction-window)

o - P CIRORN

A

- W oM W s S

L}
]
)

JCONTINO A 1% ; Py Vo TR ML SR TN 0 oy YLy R L T N e M L S W LS
'"-?":.‘lt:“‘ﬁ‘l’s":':5"!"%. O.“:“.:!.l Y, ‘ a!l"o.l AN LN MMM R\M‘ZMM‘A&\M

(prinl (send (aref spread i1 j) :bits)
1nter¢ction-v1ndow)

105

(write-string ® Output display: " interaction-window)

(case (send (aref spread i j) :output-display)
('X (write-string "Hexidecimal® interaction-window)
('B (write-string "Binary" interaction-window))))))
(cond ((equal 'formula type)
(progn (fresh-line interaction-window)
(vrite-string "Formula: " interaction-window)
(print (send (aref spread i j) :formula)
interaction-window))))
(fresh-line interaction-window)
(tv:turn-off-sheet-blinkers interaction-window)))

(defun cell-edit (1 j)
"Allows the user to edit the cell clicked upon or exit if
no menu choice is made"
(case (tv:menu-choose
' (("Empty Cell” :value empty :documentation
"Make this cell empty")
("Constant Cell" :value constant :documentation
"Make this cell a constant®)
("Text Cell™ :value text :documentation
*Make this cell a Text Cell"®)
("Formula Cell"™ :value formula :documentation
*Make this cell a Formula cell")))
(empty (make-empty-cell i j))
(constant (make-constant-cell i j))
(text (make-string-cell 1 j))
(formula (make-formula-cell i j)))
(send interaction-window :clear-screen)
(tv:turn-off-gsheet-blinkers interaction-window)
(print-spreadsheet-changed-itens))

- (defun cell-size (i j)

"Allows the user to change the number of bits for this cell.
This is the size of the byte that is removed from the cell
during each computation.”

(let ((input-value))

(cell-view { J)
(write-string

*Enter the size in bits for this cell (decimal value): "

interaction-window)
(tv:turn-on-sheet-blinkers interaction-window)
(setq input-value

(read-from-string (read-line interaction-window) nil nil))
(cond ((equal 'text (send (aref spread i j) :type))
(send interaction-window :beep))

§o () [} 9 ML "o R N ta” '1-,..,.
,l o K] ||,‘| ,,.‘\, \d DU I‘.nl'. i ‘,.|., iy .. ‘.‘?t,‘ NN ll...n_.‘l'.‘ ‘.‘l‘.'l_.._ 'y - Ly SN Y .‘. LS

)

Co S A

¢

a0

>N

106

((not (integerp input-value))
(send interaction-window :beep))
((not (plusp input-value))
(send interaction-window :beep))
;127 1s max value for bits due to program design
((> 127 input-value)
(progn
(send (aref spread 1 j) :set-bits input-value)
(send (aref spread i j) :set-value
(cond ((> 64 input-value)
(1dd (byte input-value 0)
(send (aref spread i j) :value)))
(t (+ (ash (1ddb (byte (- input-value €3) 0)
(ash (send (aref spread { j) :value)
-63)) 63) (14> (byte 63 0)
(send (aref spread i j) :value))))))
(send (aref spread i j) :set-changed-value t)
(print-spreadsheet-changed-items)))
(t (send interaction-window :beep)))
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window)))

(defun cell-output-display (1 j)

*The user can set the cell display to hexidecimal or binary"
(cell-view 1 j)

(case (tv:menu-choose
' (("CELL OUTPUT DISPLAY" :no-select t)
("Hexidecimal® :value hex :documentation
*Set output display to hexidecimal®)
("Binary®" :value binary :documentation
*Set output display to binary")))
(hex (send (aref spread i j) :set-output-display 'X))
(binary (send (aref spread { j) :set-output-display 'B)))
(send (aref spread i j) :set-changed-value t)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window)
(print-spreadsheet-changed-itens))

(defun get-cell-location-or-abort ()
"Used during move and copy (of cells). Returns a true if the
user clicks on a cell. Also allows the Go-To function to be
performed to allow user access to the entire spreadsheet.
Returns a nil if a character is typed or the Abort selection
is chosen.”
(send spreadsheet :set-item-type-alist cell-move-copy)
(loop (setq user-input (send spreadsheet :any-tyi))
(cond ((not (listp user-input))
(return-from get-cell-location-or-abort))

107

((equal :memu (car user-input))
| (cond ((equal °‘go-to (caddr(cadr user-input)))
| (funcall ‘go-to))))
[((equal :typesout-execute (car user-input))
| (cond ((equal ‘mark (cadr user-input))
(return-from get-cell-location-or-abort t))
((equal ‘abort (cadr user-input))
(return-from get-cell-location-or-abort)))))))

(defun cell-move (i j)
*Moves cell (i j) to the location specified by the user.”
(cell-vievw 1 j)
(write-string
*Click Left on the New Location for this Cell
or Type any Character to Abort Move" interaction-window)
(cond ((get-cell-location-or-abort)
(progn
(aset (aref spread i j) spread
(car (caddr user-input))(cadr (caddr user-input)))
(send (aref spread (car (caddr user-input))
i (cadr (caddr user-input))) :set-changed-valus t)
| (cond ((equal 'formula (send (aref spread i j) :type))
(nsubstitute (caddr user-input) (list { j)
formula-list :test ‘'equal)))
(aset (make-instance 'cell) spread { j)
(print-spreadsheet-changed-{tems)))
(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window))

(defun cell-copy (1 Jj)
"Copies cell (i j) to the location specified by the user."”
(cell-view 1 j)
(write-string "Click Left on Location for a Copy of this Cell
or Type any Character to Abort Move" interaction-window)
(cond ((get-cell-location-or-abort)
(progn
' (send (aref spread (car (caddr user-input))
{ (cadr (caddr user-input))) :copy-cell i j)
{ (cond ((equal 'formula (send (aref spread { j) :type))
|

(setq formula-list (cons (caddr user-input)
formula-list))))
(print-spreadsheet-changed-items)))
(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window))

R NN NN s st

108

(defun cell-empty (1 j)
*Erases cell (i j) and repaces it with an empty one."
(make-empty-cell 1 })
(print-spreadsheet-changed-itens)

(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-windovw))

(defun insert-rovw (inserted-i notused)

"A empty row is inserted at the inserted-i location and the
rest are moved down. The bottom-most row is removed. The
formula list must be updated.®
(cond ((tv:menmu-choose

' (("CONFIRM YOU WISH TO INSERT A ROW" :no-select t)
("Yes" :value t :documentation
"Confirm desire to insert row")
("No® :value nil :documentation
*Abort row insertion")))

(progn
(loop for j from 1 to number-of-columns do
(setq formula-list (remove (list number-of-rows j)
formula-list :test 'equal)))
(loop for i from number-of-rows
downto (+ 1 inserted-1i) do
(loop for j from 1 to number-of-columns do
(aset (aref spread (- 1 1) j) spread i j)
(send (aref spread 1 j) :set-changed-value t)
(cond ((equal ‘'formula
(send (aref spread i j) :type))
(nsubstitute (list 1 j) (list (- 1 1) J§)
formula-list :test 'equal)))))
(loop for j from 1 to number-of-columns do
(aset (make-instance ‘cell) spread inserted-i j))
(print-spreadsheet-changed-items)))))

(defun delete-row (deleted-i notused)
"The row at deleted-i is deleted and the rest are moved up.
An empty rov is inserted at the bottom. The formula list
is updated.”
(cond ({(tv:menu-choose
' (("CONFIRM YOU WISH TO DELETE A ROW" :no-select t)
("Yes" :value t :documentation
*"Confirm desire to delete row")
("No" :value nil :documentation
*Abort row deletion®)))

PR N R A TS R PO M W SR C R ORI .

(progn
(loop for j from 1 to number-of-columns do

(setq formula-list (remove (list deleted-i j)
’ formula-1li{st :test ‘'equal)))
(loop for 1 from dsleted-i to (- mmber-of-rows 1) do
(loop for j from 1 to mumber-of-columns do
(aset (aref spread (+ 1 1) j) spread 1 j)
(send (aref spread { j) :set-changed-value t)
(cond ((equal 'formula
(send (aref spread { j) :type))
(nsubstitute (list { j) (1list (+ 1 1) J)
formula-1list :test ‘equal)))))
(loop for j from 1 to mmber-of-columns do
(aset (make-instance 'cell) spread number-of-rows j))
(print-spreadsheet-changed-items)))))

(defun get-row-location-or-abort ()
“Used during move-rovw and copy-row. Returns a true if the user
clicks on a row. Allows Go-To function to be performed."
(send spreadsheet :set-item-type-alist row-move-copy)
(loop (setq user-input (send spreadsheet :any-tyi))
(cond ((not (listp user-input))
(return-from get-row-location-or-abort))
((equal :menu (car user-inmput))
(cond ((equal 'go-to (caddr(cadr user-input)))
(funcall 'go-to))))
((equal :typeout-execute (car user-input))
(cond ((equal ‘mark (cadr user-input))
(return-from get-row-location-or-abort t))
((equal ‘'abort (cadr user-input))
(return-from get-row-location-or-abort)))))))

(defun move-rovw (moved-i notused)
"Moves row moved-i to a new location specified by the user.
Updates formula list.®
(let ((moved-to-1))
(cond ((tv:menu-choose
' (("CONFIRM YOU WISH TO MOVE A ROW" :no-select t)
("Yes" :value t :documentation
*Confirm desire to move row")
("No® :value nil :documentation
*Abort row move")))

(progn
(send interaction-window :select)

(send interaction-window :clear-screen)

(wvrite-line "Click Left on New Row Location or Type
any Character to Abort Move" interaction-window)

(cond ((get-row-location-or-abort)

110

(cond
((not (equal moved-i (setq moved-to-i
’ (car (caddr user-input)))))
(progn
' (loop for j from 1 to number-of-columns do
* . (aset (aref spread moved-i j)
spread moved-to-1i j)
(send (aref spread moved-to-i j)
! :set-changed-value t)
(cond ((equal 'formula (send (aref
spread moved-to-1 j) :type))
(nsubstitute (list moved-to-i j)
(list moved-1 j)
formula-list :test 'equal))))
(loop for j from 1 to number-of-columns do
(aset (make-instance 'cell)
spread moved-i j))
{print-spreadsheet-changed-items)))))
(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window))))))

(defun copy-row (copied-i notused)
“Copies row copied-i to a new location. Update formula-list."
. (let ((copled-to-1i))
(cond ((tv:menu-choose
' (("CONFIRM YOU WISH TO COPY A ROW"™ :no-select t)
("Yes"™ :value t :documentation
"Confirm desire to copy row")
("No™ :value nil :documentation "Abort row copy")))
(progn
(send interaction-window :select)
: (send interaction-window :clear-screen)
; (write-line "Click Left on Location for a Copy of this
) Row or Type any Character to Abort Copy"
interaction-window)
(cond ((get-row-location-or-abort)
(cond ((not (equal copied-i (setq copied-to-1i
(car (caddr user-input)))))

T e -

(progn
(loop for j from 1 to
number-of-columns do
(send (aref spread copied-to-{i j)
:copy-cell copied-i j)
(cond ((equal 'formula (send (aref
spread copied-i §j) :type))
(setq formula-list (cons

PP ¥ ".I I’\f\"- \'\ 'h' b A ‘.'\‘P‘-'.\ '-..'-
X N 2y N e) t

RN MY MQ! ." O ‘ 1)
A DU VAR L AN A AU S L R R

e

111

(list copied-to-1i j)
formula-1list)))))
- (print-spreadsheet-changed-itenms)))))
(t (send interaction-window :beep)))
(send spreadshest :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window))))))

(defun width (] notused)
*The user can specify a column width (for display purposes) for
the column he selected"
(let ((input-value))
(send interaction-window :select)
(send interaction-window :clear-screen)
(vrite-string "Column" interaction-window)
(format interaction-window * ~-A *
(send (aref column j) :letter))
(fresh-line interaction-window)
(write-string "Enter column width in decimal for this column: *
interaction-window)
(tv:turn-on-sheet-blinkers interaction-window)
(setq input-value (read-from-string
(read-line interaction-window) nil nil))
(cond ((integerp input-value)
(cond ((plusp input-value)
(send (aref column j) :set-width input-value))
(t (send interaction-window :beep))))
(t (send interaction-window :beep)))
(tv:turn-off-sheet-blinkers interaction-window)
;the entire spreadsheet needs to be redisplayed
(print-spreadsheet)
(send interaction-window :clear-screen)))

(defun insert-column (inserted-j notused)
"A blank column is inserted at column inserted-j. The rest are

moved to the right. The right-most column is removed. Column
widths are not changed."

(cond ((tv:menu-choose
*(("CONFIRM YOU WISH TO INSERT A COLUMN" :no-select t)
("Yes” :value t :documentation
*Confirm desire to insert column")
("No" :value nil :documentation
*Abort column insertion®)))

(progn
(loop for i from 1 to number-of-rows do
(setq formula-list (delete (list i number-of-columns)
formula-list :test 'equal))

YL S LA AL TS
N ﬁL\.JAl:IMLTL‘L

112

(loop for j from number-of-columns
downto (+ 1 inserted-j) do
(aset (aref spread 1 (- j 1)) spread i j)
(send (aref spread i j) :set-changed-value t)
(cond ((equal *formula
(send (aref spread 1 j) :type))
(nsubstitute (list 1 j) (1list 1 (- j 1))
formula-list :test ‘'equal))))
(aset (make-instance 'cell) spread i inserted-j))
(print-spreadsheet-changed-items)))))

(defun delete-column (deleted-j notused)

*The column at deleted-j is removed and the rest are moved
to the left. A blank column is moved in on the right.
Column widths are not changed.*

(cond ((tv:menu-choose

* (("CONFIRM YOU WISH TO DELETE A COLUMN" :no-select t)
("Yes” :value t :documentation
*Confirm desire to delete column")
("No” :value nil :documentation
*Abort column deletion®")))
(progn
(loop for { from 1 to number-of-rows do
(setq formula-list (delete (list i deleted-j)
formula-1list :test 'equal))
(loop for j from deleted-j to
(- number-of-columns 1) do
(aset (aref spread 1 (+ 1 j)) spread i j)
(send (aref spread i j) :set-changed-value t)
(cond ((equal 'formula
(send (aref spread i j) :type))
(nsubstitute (list 1 jJ) (list i (+ 1 3))
formula-list :test 'equal))))
(aset (make-instance ‘'cell)
spread i number-of-columns))
(print-spreadsheet-changed-items)))))

(defun get-column-location-or-abort ()

"Used during move-column and copy-column. Returns a true if the
user clicks on a column. Also allows the Go-To function to be
performed to access the entire spreadsheet”

(send spreadsheet :set-item-type-alist column-move-copy)

(loop (setq user-input (send spreadsheet :any-tyi))

(cond ((not (listp user-input))
(return-from get-column-location-or-abort))
((equal :menu (car user-input))
(cond ((equal 'go-to (caddr(cadr user-input)))
(funcall 'go-to))))

113

((equal :typeout-execute (car user-input))
(cond ((equal ’'mark (cadr user-input))
(return-from get-column-location-or-abort t))
({equal 'abort (cadr user-input))
(return-from get-column-location-or-abort)))))))

{ (defun move-column (moved-j notused)
"the user can move column moved-j to a new location.*
| (let ((moved-to-}))
‘ (cond ((tv:menu-choose
' (("CONFIRM YOU WISH TO MOVE A COLUMN" :no-select t)
| ("Yes" :value t :documentation
*Confirm desire to move column")
("No" :value nil :documentation
*Abort column move")))
(progn
(send interaction-window :select)
(send interaction-window :clear-screen)
(write-line "Click Left on New Column Location
or Type any Character to Abort Move"
| interaction-window)
‘ (cond ((get-column-location-or-abort)
(cond
((not (equal moved-j (setq moved-to-j
(car (caddr user-input)))))
(progn
(loop for 1 from 1 to number-of-rows do
(aset (aref spread i moved-j)
spread i moved-to-})
(send (aref spread i moved-to-j)
:set-changed-value t)
(aset (make-instance 'cell) spread
i moved-j)
(cond ((equal 'formula (send (aref
spread i moved-to-j) :type))
(nsubstitute (list i moved-to-j)
(list i moved-j)
formula-1list :test 'equal))))
(print-gpreadsheet-changed-items)))))
(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window)))))) !

(defun copy-column (copied-j notused)
"The user can copy column copied-j to a new location."
(let ((copied-to-]))
(cond ((tv:menu-choose 9

V08 (B0 1
l‘.‘l‘.‘»‘?’c‘.‘ﬂ.‘u’.‘l‘f‘l‘. A

114

' (("CONFIRM YOU WISH TO COPY A COLUMN" :no-select t)
{"Yes" :value t :documentation
. "Confirm desire to copy column")
(*No" :value nil :documentation
"Abort column copy®)))
(progn
(send interaction-window :select)
(send interaction-window :clear-screen)
(vrite-line
*Click Left on Location for a Copy of this Column
or Type any Character to Abort" interaction-window)
(cond ((get-column-location-or-abort)
(cond ((not (equal copied-j (setq copied-to-j
(car (caddr user-input)))))
(progn
(loop for 1 from 1 to
number-of-rows do
(send (aref spread { copied-to-j)
:copy-cell 1 copied-j)
(cond ((equal 'formula (send (aref
spread i copied-j) :type))
(setq formula-list (cons
(list i copied-to-j)
formula-1list)))))
(print-spreadsheet-changed-items)))))
(t (send interaction-window :beep)))
(send spreadsheet :set-item-type-alist edit-list)
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window))))))

(defun save-file ()

"The current spreadsheet is save as a user-specified file
in the local machine's Logic-calc directory"
(let ((output-pathname)(out-stream)
(filename-string) (output-value))
(write-string
"Enter the file name to store this worksheet in: "
interaction-window)
(cond ((equal "" (setq filename-string
(remove #\sp (read-line interaction-window))))
(return-from save-£file)))
(setq output-pathname (make-pathname :host "lm"
‘directory "logic-calc"
:name filename-string
:type "logic-calc"))
(setq out-stream (open output-pathname :if-exists :new-version
:direction :output))
(format out-stream "-~-A-$" number-of-rows)

INANERAAVLA

N ST AT A W E I TR T

(format out-stream "~-A-%" number-of-columns)
(format out-stream "~A~8" first-display-row)
(format out-stream "~A~8$" first-display-column)
(loop foxr j from 1 to mmber-of-columns do
(format out-stream "~A~3" (send (aref column j) :width)))
;save items unique to each cell in ASCII form to allow
; easy file interface
(loop for 1 from 1 to number-of-rows do
(loop for j from 1 to number-of-columns do
(case (send (aref spread i j) :type)
(empty (format out-stream "E"))
(constant (progn
(format out-gtream "C")
(format out-stream "~A"
(send (aref spread i j) :output-display))
(format out-gtream "~A~%"
(send (aref spread i j) :bits))
(format out-gtream "~A~§"
(send (aref spread i j) :value))))
(text (progn (format out-stream "T")
(format out-stream "~A~%"
(send (aref spread i j) :value))))
(formula (progn
(format out-stream "F")
(format out-stream "-A"
(send (aref spread i j) :output-display))
(format out-gtream "~A"
(send (aref spread 1 j) :bits))
(print (send (aref spread i j) :formula)
out-stream)
;identify string values
(cond ((stringp (setq output-value
(send (aref spread i j) :value)))
(format out-stream "~%S"))
(t (format out-stream "-~sN")))
(format out-stream "~A~%" output-value))))))
(close out-stream)
(write-string "File written - Press Return to Continue"
interaction-window)
(read-line interaction-window)))

(defun read-file ()

"The user can replace the current spreadsheet with one saved on
disk. All files are saved in the local machine's logic-calc
directory"

(let ((input-pathname)(in-stream)(filename-string))
(write-string "Enter the file name to read: "

interaction-window)

‘J'-f“f,_f.‘-f f.f\-'~q‘.(\r, Ld LN I o i AN L R T L BT SRR R S -_'-‘

Mm:lf:[:.(‘:f.'n‘."\'-“f..-:.- PR P N S SR I ;-l‘-' et T e T e e g l"-‘f.‘l"‘.‘_

- - ™
- T s -

2 e

-
-

pe -

ive -
o T e

o A
IOHOAUBCCNIN

LN TRLY =Y S o ot g PR U IR RN EN AW Y I WY Y D s 4§ A Ao BV g

116

(cond ((equal "" (setq filename-string
~ (remove #\sp (read-line interaction-window))))
(return-from read-file)))
(setq input-pathname (make-pathname :host "1lm"
:directory "logic-calc"
:name filename-string
:type "logic-calc"))
(send interaction-window :clear-screen)
(cond ((setq in-stream (open input-pathname :direction :input
:if-does-not-exist nil))
(progn (write-string "STANDBY - Reading file: "
interaction-window)
(write-line filename-string interaction-window)))
(t (progn (send interaction-window :beep)
(wvrite-string "ERROR: File Not Found: "
interaction-window)
(write-line filename-string interaction-window)
(write-string "Press Return to Continue"
interaction-window)
(read-line interaction-window)
(return-from read-file))))
(setq formula-list nil)
(setq number-of-rows (read-from-string (read-line in-stream)))
(setq number-of-columns
(read-from-string (read-line in-stream)))
(setq first-display-row
(read-from-string (read-line in-stream)))
(setq first-display-columm
(read-from-string (read-line in-stream)))
(loop for j from 1 to number-of-columns do
(send (aref column j) :set-width
(read-from-string (read-line in-stream))))
(loop for j from (+ 1 number-of-columns) to
max-number-of-columns do
(send (aref column j) :set-width 20))
(setq spread (make-array (list (+ 1 number-of-rows)
(+ 1 number-of-columns))))
;reconstruct each cell
(loop for { from 1 to number-of-rows do
(loop for j from 1 to number-of-columns do
(case (read-char in-stream)
(#\E (aset (make-instance 'cell) spread i j))
(#\C (aset (make-instance 'cell :type 'constant
:output-display (case (read-char in-stream)
(A\X 'X)
(#\B 'B))

» PRI T P w PP ; BT LAY e ST D S I e TN AL S 2 e
N G R N O G L G o e 8 A A A N e N I R A R N AN

T

T

-

e met R

o

.
-

- -

117

:bits (read-from-string (read-line in-stream))
:value (read-from-string (read-line in-stream)))
spread 1 j))
(M\T (aset (make-instance 'cell :type 'text
:value (read-line in-stream)) spread i j))
(#M\F (progn (aset (make-instance ‘cell :type 'formula
:output-display (case (read-char in-stream)
(#\X 'X)
(#\B 'B))
:bits (read-from-string
(read-line in-stream))
:formula (read-from-string
(read-line in-stream))) spread i j)
(cond ((equal #\S (read-char in-stream))
(send (aref spread i j)
:set-value (read-line in-stream)))
(t (send (aref spread i j) :set-value
(read-from-string
(read-line in-stream)))))
(setq formula-list
(cons (list 1 j) formula-list)))))))
(close in-stream)
(print-spreadsheet)
(write-string "File retrieved - Press Return to Continue"
interaction-window)
(read-line interaction-window)))

(defun file ()
"The user can specify read or write operations."
(send interaction-window :select)
(send interaction-window :clear-screen)
(tv:turn-on-sheet-blinkers interaction-window)
(case (tv:menu-choose
' (("FILE OPERATIONS" :no-select t)
("Save File" :value save :documentation
"Save this spreadsheet")
("Read File" :value read :documentation
"Read previously saved file")))
(save (save-file))
(read (read-file)))
(send interaction-window :clear-screen)
(tv:turn-off-sheet-blinkers interaction-window))

(defun size ()

"The size of a spreadsheet can be changed with this function."
(let ((new-rows)(new-columns)(old-spread))
(send interaction-window :select)
(send interaction-window :clear-screen)

, PR e O - W P O . "t
“..t'*"“‘,"‘.:'“:"""‘!'1‘:"‘:"‘!':‘." X l'!‘l..\bl_.‘c‘!‘l‘. .‘0‘!..‘.‘“. A NS MR n,o AN M " Py J Ay O.t :"‘:‘" O.'ll".. N

AL
‘I.‘)\

118

(tv:turn-on-sheet-blinkers interaction-window)
(format interaction-window "Current number of rows is :@: ~d*
number-of-rows)
(fresh-line interaction-window) ;
(format interaction-window "Current number of columns is : ~4"
number-of-columns)
(fresh-line interaction-window)
(write-string "Enter the nevw number of rows: "
interaction-window)
(setq new-rows (read-from-string
(read-line interaction-window) nil nil))
(write-string "Enter the nev number of columns: *
interaction-window)
(setq new-columns (read-from-string
(read-line interaction-window) nil nil))
(cond ((and (integerp new-rows) (plusp new-rows)
(plusp new-columns) (<= new-rows max-number-of-rows)
(integerp new-columns)
(<= new-columns max-number-of-columns))
;construct the new spreadsheet
(progn
(setq old-spread spread)
(setq spread (make-array (list (+ 1 new-rows)
(+ 1 new-columns))))
(loop for 1 from 1 to new-rows do
(loop for j from 1 to new-columns do
(cond
((and (<= i number-of-rows)
(<= j number-of-columns))
(aset (aref old-spread i j) spread {1 j))
(t (aset (make-instance ‘'cell) spread 1 j)))))
;remove non-existent cells from formula list
(loop for i from (+ 1 new-rows) to number-of-rows do
(loop for j from 1 to number-of-columns do
(setq formula-list (delete (list i 1)
formula-list :test 'equal))))
(loop for j from (+ 1 new-columns) to
number-of-columns do
(loop for i from 1 to number-of-rows do
(setq formula-list (delete (list { j§)
formula-list :test 'equal))))
;reset global variables
(setq number-of-rows new-rows)
(setq number-of-columns new-columns)
(cond ((or (> first-display-row number-of-rows)
(> first-display-column number-of-columns))
(progn (setq first-display-row 1)
(setq first-display-column 1))))

-

119

(print-spreadsheet))) T

(t (send interaction-window :beep)))
(send interaction-window :select) 4
(send interaction-window :clear-screen) y
(tv:turn-off-sheet-blinkers interaction-window)))

(defun go-to ()
"A new region can be viewed with this function.” .
(let ((input-value)(column-number) (row-number) N
(original-x-position) (original-y-position))
(send interaction-window :select)
(fresh-line interaction-window) %
(multiple-value-setq (original-x-position original-y-position)
(send interaction-window :read-cursorpos)) '
(write-string N
"Enter cell name to be placed in upper left corner .
of screen: " interaction-window)

(tv:turn-on-sheet-blinkers interaction-window) "
(setq input-value (string-upcase (string-left-trim '(#\sp) 5
(read-line interaction-window)))) .

(multiple-value-setq (row-number column-number)
(row&col (read-from-string input-value)))
(cond ((and (integerp row-number) (plusp row-number) :
(<= row-number number-of-rows)(plusp column-number) :
(<= column-number number-of-columns)) *
(progn (setq first-display-row row-number)
(setq first-display-column column-number)
(print-spreadsheet))) Y
(t (send interaction-window :beep)))
(send interaction-window :select) N
(send interaction-window

:set-cursorpos original-x-position original-y-position) v

(send interaction-window :clear-eof) ﬁ
(tv:turn-off-sheet-blinkers interaction-window))) .:

‘Q

(defun reset-recalc-recursive (x) L

*All formula cells' recalculation flag must be reset before a

spreadsheet calculation."

(cond (x (progn (send (aref spread (car (car x))(cadr (car x))) N
:set-recalc nil) i

(reset-recalc-recursive (cdr x)))))) ﬁ

X]

(defun calculate-recursive (x) ;
"Recalculates all formula cells in the formula list." ,
(cond (x (progn (evaluate-cell (car (car x))(cadr (car x))) b
(calculate-recurgive (cdr x)))))) N

'I'

]

(defun calc (&key no-redisplay) ?

¢
o ‘i"»"l‘.tan’.l’l'..'s'!‘d!'

- -y w

| " [3
s M AN o g M WU S e TN o, ;.a. 8,00 Yy G !

¥

O
RN

’a‘!‘t'..u',.o’!.l.:’l‘: Ay, |"‘\'.\"n.“ '-5‘!.‘!'- l.‘.:.‘.t‘

*All formula cells within the spreadsheet are recalculated. If
the keyword no-redisplay is set to trus then the recalculation
will not display updated results. This is useful for testing
over several recalculations. The program operates faster.®
(reset-recalc-recursive formula-list)

(calculate-recursive formula-list)

(cond ((not no-redisplay) (print-spreadsheet-changed-items))))

(defun restart ()
*allows user to restart edit mode from outside Logic Calc."
;view upper-left portion of spreadshest
(setq first-display-row 1)
(setq first-display-column 1)
;connect i-o0 buffers
(send spreadsheet ':set-io-buffer program-io-buffer)
(send interaction-window ':set-io-buffer program-io-buffer)
(send main-menu ':set-io-buffer program-io-buffer)
;set the font for the spreadsheest
(send spreadsheet :set-font-map (fillarray (make-array 26.)
(11st fonts:tvfont)))
(send spreadsheet :set-item-type-alist edit-list)
(send program-constraint-window :expose)
(send spreadsheet :expose)
(send interaction-window :expose)
(send main-menu :expose)
(print-spreadsheet)
;loop until exit is seen.
;Call functions as appropriate response to user-inputs
(block main-program-loop
(loop (setq user-input (send spreadsheet :list-tyi))
(cond ((equal :menu (car user-input))
(cond ((equal ‘exit (caddr (cadr user-input)))
(return-from main-program-loop))
(t (funcall (caddr (cadr user-input))))))
((equal :typeout-execute (car user-input))
(funcall (cadr user-input) (car (caddr user-input))
(cadr (caddr user-input)))))))
(send spreadsheet :kill)
(send program-constraint-window :kill))

; The next four functions are designed to be incorporated as

; entries into a cell's formula. They provide means of accessing
other cell's contents.

(defun cell ("e x)

"Returns the contents of the cell specified by parameter x. The
referenced cell must first be evaluated by evaluate-cell.
Allows indefinite indirection by permitting an entry such as:

(Cell (Cell (Cell C12))).

120

121

All cells in the indirect chain except the last must have a
string value corresponding to a cell location”
(let ((vow)(col)) ‘ _
(cond ((and (listp x) (equal ‘cell (car x)))

(setq x (read-from-string (eval x)))))
(cond ((multiple-valus-setq (row col) (row&col x))

(progn (evaluate-cell row col)

(send (aref spread row col) :value)))
(t "ERROR"))))

(defun cell-offset ("e x j 1)
“Returns the contents of the cell specified by parameter x
offset by {1 rows and j columns. The referenced cell must first
be evaluated by evaluate-cell. No indirection allowed."
(let ((row)(col))
(setq 1 (eval 1))
(setq j (eval }j))
(cond ((and (integerp i) (integerp j)
(multiple-value-setq (row col) (row&col x)))
(progn
(setq row (+ row 1))
(setq col (+ col j))
K (cond ((and (<= row number-of-rows)(plusp row)
E (<= col number-of-columns)(plusp col))
(progn (evaluate-cell row col)
(send (aref spread row col) :value)))
(t "ERROR"))))
(t "ERROR"))))

(defun cell-indirect ("e x)

"Returns the contents of the cell specified at cell-location x.
Provides a single level of indirection.”

(let ((pointer)(pointer-row) (pointer-col)(row)(col))
(multiple-value-setq (pointer-row pointer-col)(rowkcol x))
(cond ((and pointer-row pointer-col)

(progn
(evaluate-cell pointer-row pointer-col)
(setq pointer
(send (aref spread pointer-row pointer-col) :value))
, (cond ((stringp pointer)
‘ (progn (setq pointer (read-from-string
(remove #\space pointer)))
(multiple-value-setq (row col)
(row&col pointer))
(cond ((and row col)

T

DD W Wy W \(
* o

sy P o Ca gt v
" ' .
40 " B

P ¥ ‘-."

. LK \
pteah 50.";“ o,"n“'-,"h"n‘. :""., [l

122

(progn
(evaluate-cell row col)
(send (aref spread row col)
:value)))
(t "ERROR"))))
(t "ERROR"))))
(t "ERROR"))))

* (defun dual-rank-register ("e intermal in out inval)

’ *the user must supply a UNIQUE name for the internal parameter.
A cell with this function entered acts as a dual-ranked
register. It's 'inval’ is gated in whenever 'in' is true.
The output is maintained, however, until ‘out' is true."
(let ((in (eval in))(out (eval out)))

(cond ((not (boundp internal))(set internal (list 0 0))))
(cond (in (cond (out (progn
. (rplaca (eval internal) (eval inval))
(rplacd (eval internal)
(11st (car (eval intermal))))
(cadr (eval internal))))

) (t (cadr (rplaca (eval internal)

' (eval inval))))))

; (out (cadr (rplacd (eval internal)

' (l1ist (car (eval intermal))))))

(t (cadr (eval intermal))))))

;The next function is designed to be used in a driver routine
N ; to put a value in a cell without changing its type.
o (defun load-cell ("e x valus)
* "This procedure will load a value into the cell named by
paramter x, setting its changed value flag, and without
changing its formula."
(let ((1)(}))
(cond ((multiple-value-setq (i j) (rowscol x))
(progn
(send (aref spread i j) :set-value (eval value))
(send (aref spread i j) :set-changed-value t))))))

- . - >

;the main program begins

;create cell objects for each indice in the array "spread”
(loop for { from 1 to number-of-rows do

(loop for j from 1 to number-of-coluans do
) (aset (make-instance ‘'cell) spread 1 j)))

;create column objects for all
; possible columns in the array "column”

RAWLIMLIAAS) A AR " g - N 34 A LTS AT LA B LI I T O WA T N TR R
‘\ AL g':"l-."i "a_l“l"i"‘.}‘n‘l’q,l'"\“ "1. N), ¥ J‘L) ..el“_ 1) '.. i \f + o ’ " * <\ "\ N *’ v

(loop for j from 1 to max-number-of-columns do
(aset (make-instance ‘column-flavor
:letter (column-string j)) column j))

;call restart to put in edit mode
(restart)

APPENDIX B: LO0GIC CALC DRIVING PROGRAM FOR MICROPROCESSOR
;The following functions provide cell names.

(Defun PC () (Cell A9)) ;Program Counter

(Defun IR () (Cell Al12)) ;Instruction Register
(Defun RegA () (Cell Al15)) ;A Register

(Defun RegB () (Cell Al8)) ;B Register

(Defun RegX () (Cell A2l)) X Register

(Defun RegY () (Cell A24)) .Y Register

(Defun SP () (Cell A27)) ;Stack Pointer

(Defun RegS () (Cell A30)) ;Status Register

(Defun IDB () (Cell B2)) ;Internal Data Bus
(Defun MDR () (Cell B6)) ;Memory Data Register
(Defun MAR () (Cell B9)) ;Memory Address Register
(Defun DBI () (Cell B12)) ;:Data Bus Interface Register
(Defun EDB () (Cell B1%5)) ;External Data Bus
(Defun EAB () (Cell B18)) ;Internal Data Bus
(Defun Adder () (Cell Cl12)) ;adder/subtracter

iThe following functions test the state of the clock, returning
; & value of true if the clock is in the corresponding state.

(Defun Rising () (Zerop (Cell A2)))
(Defun High () (Equal (Cell A2) 1))
(Defun Falling () (Equal (Cell A2) 2))
(Defun Low () (Equal (Cell A2) 3))

;The following functions test signals, returning a value of true
i 1f the corresponding signal is active.

(Defun Reset () (Zerop (Cell A6)))
(Defun MemR () (Zerop (Cell B21)))
(Defun MemW () (Zerop (Cell B24)))

;The following functions test up to S bits in the Micro-
; instruction Register, returning a true value if all bits are
; set to 1 for Microbitp or all bits set to zero for Microbitn.

(Defun Microbitp (A &ptional B C D E)
(And (Cond (E (Logbitp E (Cell D2)))(T))
(Cond (D (Logbitp D (Cell D2)))(T))
(Cond (C (Logbitp C (Cell D2)))(T))
(Cond (B (Logbitp B (Cell D2)))(T))
(Logbitp A (Cell D2))))

124

e A e im DA e 4 A A e

(Defun Microbitn (A &Optional B C D E)
(Mot (Or (Cond (E (Logbitp E (Cell D2))))
(Cond (D (Logbitp D (Cell D2))))
(Cond (C (logbitp C (Cell D2))))
(Cond (B (Logbitp B (Cell D2))))
(Logbitp A (Cell D2)))))

(Defun Rising&Microbitp (A &ptional B C D E)
(And (Cond (E (Logbitp E (Cell D2)))(T))
(Cond (D (Logbitp D (Cell D2)))(T))
(Cond (C (Logbitp C (Cell D2)))(T))
(Cond (B (Logbitp B (Cell D2)))(T))
(Logbitp A (Cell D2))
(Zerop (Cell A2))))

;The following function allows the user to select between
three clocking modes: Full Speed, Fixed Number of Cycles,
or Single Cycles. For each cycle, the spreadsheet is
recalculated four times. If Full Speed operations is
selected, interim results are not displayed.

The variable Cycle-Global iz used to keep track of the
mode and the number of cycles if in the Fixed Number of
Cycles Mode.

e ws ws @t we we ®

(Setq Cycle-Global 0)
(Defun Cycle ()
(Cond ((Plusp Cycle-Global)
(Progn (Setq Cycle-Global (- Cycle-Global 1))
(Calc :No-Redisplay Nil)
(Calc :No-Redisplay Nil)
(Calc :No-Redisplay Nil)
(Calce)))
((Minusp Cycle-Global)
(Progn (Calc :No-Redisplay T)
(Calc :No-Redisplay T)
(Calc :No-Redisplay T)
(Calce)))
(T (Progn
(Setq Cycle-Global
(Case (Tv:Menu-Choose
'{("Cycles Menu" :No-Select T)
("Full 8peed” :Value -1)
("One Cycle® :Value Nil)
("Set Number Of Cycles” :Value 1)))

Gt ALY O, LR WA 1 TGO

(-1 -1)
(N1l 0)

(1 (Progn.

(Tv:Turn-On-Sheet-Blinkers Interaction-Window)
(Vrite-String "Enter Number Of Cycles: "
Interaction-Window)

(- (Read-From-String

(Read-Line Interaction-Window)) 1)))))
(Tv:Turn-0ff-Sheet-Blinkers Interaction-Window)
(Send Interaction-Window :Clear-Screen)

(Calc)(Calc)(Calc)(Calc)))))

;The automatic simulation begins here

(Print-Spreadsheet) ;
(Load-Cell A6 0) H
(Load-Cell A2 0) :
(Load-Cell A36 0) H
(Calc)

(Load-Cell A6 1) :

N

;begin fetch-execute cycle

(Block Main-Loop
! (Loop Do
K (Load-Cell D6 0)
(Cycle)
(Case (IR)
(00
(01
(02
(03
(04
(05
(06

(Progn
(Progn
(Progn
(Progn
(Progn
(Progn

(07 (Progn

(08 (Progn

(09 (Progn
(10 (Progn

' (11
(12

(Progn
(Progn

;microcode address for fetch

;microcode addresses for execute
(Return-From Main-Loop))

(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(load-Cell
(Load-Cell
(Load-Cell

L Y] 3 L) > N %] A
RSN A A OO W A WO AL X W AR,

D6
Dé
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
Dé
D6
D6

™)
W '."-v‘.‘\‘ b

display the spreadsheet
activate a reset signal
; initialize the clock to a rising edge
; initialize cycle counter cell

clear reset signal

01) (Cycle)))
02) (Cycle)))
03)(Cycle)))
04) (Cycle)))
05)(Cycle)))
06) (Cycle)

07)(Cycle)))
06) (Cycle)

08) (Cycle)))
06) (Cycle)

09) (Cycle)))
06) (Cycle)

10) (Cycle)))
06) (Cycle)

11) (Cycle)))
12)(Cycle)))
13)(Cycle)))

b K= Rt Al A At AL BY AV A3 4t Ao e e el ek ot At ol |

;exit for HALT

-
)

‘qrh O I NN,
¥ » W\ ()

126

~

At AN

AR LA TN |
N \l‘i an

(13
(14
(15
(16
(17
(18
(19
(20
(21
(22
(23
(26
(25
(26
(27
(28
(29
(30

(31
(32

(33

(34
(35
(36
(37
(38
(39
(40

(61
(62

(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn
(Progn

(Progn
(Progn

(Progn

(Progn
(Progn
(Progn

(Progn

(Progn
(Progn
(Progn
(Progn
(Progn

(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
{Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell
(Load-Cell

D6
D6
D6

D6
D6
D6
D6
Dé

D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
Dé
D6
D6
D6
Dé
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
Dé
D6
D6
D6
D6
D6
Dé
D6

14) (Cycle)))
15) (Cycle)))
06) (Cycle)
16) (Cycle)))
06) (Cycle)
17)(Cycle)))
06) (Cycle)
18) (Cycle)))
06) (Cycle)
19)(Cycle)))
06) (Cycle)
20) (Cycle)))
21)(Cycle)))
22)(Cycle)))
23)(Cycle)))
24) (Cycle)))
25) (Cycle)
26) (Cycle)))
25) (Cycle)
27)(Cycle)))
25) (Cycle)
28) (Cycle)))
25)(Cycle)
29)(Cycle)))
30) (Cycle)))
31)(Cycle)))
32) (Cycle)))
33) (Cycle)))
34)(Cycle)
35)(Cycle)
36) (Cycle)))
37) (Cycle)
35)(Cycle)
36) (Cycle)))
34)(Cycle)
36) (Cycle)))
37)(Cycle)
36) (Cycle)))
38) (Cycle)
39) (Cycle)))
40) (Cycle)
39)(Cycle)))
41) (Cycle)))
42) (Cycle)))
43)(Cycle)))
44)(Cycle)))
25)(Cycle)
45) (Cycle)

N e

\-‘~ . X .' W
s 1&1‘gztu1uyx.-. {-t-f-{‘f-l Ay ;;.-,-,-JA‘.‘.rAt.,-_Lflg.r

o«

127

e e e a, w, ”

LIRS

0

128

(Load-Cell D6 46)(Cycle)
. (Load-Cell D6 47)(Cycle)))
(43 (Progn .(Load-Cell D6 48)(Cycle)
(Load-Cell D6 47)(Cycle)))
(44 (Progn (Load-Cell D6 06)(Cycle)
(Load-Cell D6 47)(Cycle)))
(45 (Progn (Load-Cell D6 06)(Cycle)
(Cond ((Logbitp O (Regs))
(Progn (Load-Cell D6 47)
(Cycle))))))
(46 (Progn (Load-Cell D6 06)(Cycle)
(Cond ((Logbitp 1 (Regs))
(Progn (Load-Cell D6 47)
: (Cycle))))))
‘ (47 (Progn (Load-Cell D6 06)(Cycle)
~ (Cond ((Logbitp 2 (Regs))
(Progn (Load-Cell D6 47)
(Cycle)))))))))

(Restart) ; return to edit mode displaying final results

DIRCIRROROEA SR N A’ b P y 7. o LT AT AT o ™
R AU NS UGS D‘.Lt',ft'.:".\‘,l.s’l.l.‘ I LRT o, Lol L ! S S Y G N Caa?

\ R Sy, o D ag st ot g i, * - ~ + L) & (N A VRN W] o & T + Y - . . ¥, ¥ v + t 3 » 3 . [J ¥ . 0

- w x g

BIBLIOGRAPHY

[1] American National Standards Institute. "1EEE Standard
for Binary Floating-Point Arithmetic," Std. 754, New
York, 1985,
; (2] A. Barna and D. I. Porat, Introduction to Digital
¢ Iechnigues, 2nd ed., New York: John Wiley & Sons, 1987.

4 (3] P. M. Chirlian, Analysis and Design of Integrated
’ Circuits, New York: Harper & Row Publishers, 1987.

i (4] H. G. Cragon, "Simulation of Processor Arrays Using
y Spreadsheet Programming," Unpublished Manuscript,
: University of Texas at Austin, 1985.
[5] Explorer Lisp Reference, Austin: Texas Instruments Inc.,
1985.
: [6] Explorer Window System Reference, Austin: Texas

Instruments Inc., 1985.

(7] Explorer ZMACS Editor Reference, Austin: Texas
Instruments Inc., 1985.
1
, (8] J. L. Haynes, "Circuit Design with Lotus 1-2-3," in Byte,
Vol. 10, pp. 143-156, Fall 1985.
3
3 (9] G. J. Lipovski, Microcomputer Interfacing: Principles and

Practice, Lexington, MA: Lexington Books, 1986.

' {10) Lotus Reference Manual Release 2, Cambridge: Lotus
) Development Corporation, 1985.

! [11] G. M. Robinson, "Technique Exploits Spreadsheet Programs
for Solving Complex Engineering Problems," in Design
News, Vol. 42, pp. 121-123, October 20, 1986.

[12) G. L. Steele Jr., Common Lisp: The Language, Burlington
: MA: Digital Press, 1984.

{13]) I. Unwala, "A Novel Environment for Design and Simulation
of Digital Systems Architecture,"” Unpublished Master's
Thesis, University of Texas at Austin, 1986.

129
O AT O A O O A Al 3 U N A T L AR A AT RS NPT L e
LR MM KA KR G e b o WP :‘ ,t‘s‘. . o.o\; PN .o‘-,.o'i.s,n 1 WAL, A G M Rl AN >

s,

> e A A e Nl

-

R R]

130
[14) T. J. Wagner and G. J. Lipovski, Fundamentals of
c omputeyr Programming, New York: MacMillan
Publishing, 1984.
[15] J. Walden, File Formats, New York: John Wiley & Sons,
1986.
[16) P. H. Winston and B. K. P. Horn, Lisp, 2nd ed., Reading,

MA: Addison-Wesley Publishing, 1984.

USOUTU(2 ; P 4% . - ' 1 A N ~ - - » gt > 1w, <
DO (Q G A 3 Wy LN, N
AU AR A l‘-‘O‘:?t‘..l‘.',n'. 8N, l':‘u'.'u AR M u"‘c‘. '...\0! (4 .'!‘c'. t"\ A "\l TN AN R S W o WL W

"t %)
e ¥

Py,
0 05 M Y

VITA

Glenn David Rosenberger was born in Johnstown,
Pennsylvania, on January 4, 1959, the son of Walter Francis
Rosenberger and Frances Elvira Rosenberger. He completed Ferndale
Area High School in 1976. He graduated from the United States Air
Force Academy in May, 1980, and was awarded a Bachelor of Science
in Electrical Engineering. He completed United States Air Force
Undergraduate Pilot Training at Williams Air Force Base, Arizona,
in August, 1981. He completed RF-4C training at Shaw Air Force
Base in May 1982. During the following years, he served as an
aircraft commander, an instructor pilot, and a ground school
instructor for the RF-4C Phantom reconnaissance fighter at
Bergstrom Air Force Base, Texas. In September, 1985, he entered
the Graduate School of the University of Texas. His research
interests include Computer Architecture, Computer Aided Design,
and Computer Arithmetic. He is a member of Etta Kappa Nu and Tau

Beta Pi.

Permanent address: 112 Habicht Street

Johnstown, Pennsylvania 15906

This thesis was typed by Glenn David Rosenberger.

(| FiErr Al |

131

-

r =

e
LAY

O
it

g KNG 0
A‘-'z‘bt'.‘n‘;‘lh't’?t’ '

